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PREFACE.

This Primer has been written to meet the needs of
the author, first, for a primary course in the calculus,
and secondly, for an outline of topics in a more advanced
course that is suitable for combined lecture and text
book instruction.

The author’s method of development is essentially
Newton’s method of fluxions, as presented by Hamilton
in his Elements of Quaternions, Bk. III, ch. II. This
method is clear, logical, and scientific, and it deserves
more recognition than it has received in general analysis,
if for no other reason than that it is the method of the
original discoverer of the calculus. Its failure to be
adopted is due to want of early publication and defective
notation, since it is remarkably perfect and general in
principle. The subsequent discoverer, Leibintz, gained
the field by publications in a desirable notation,
although founded upon inferior infinitessimal principles.
Lagrange attempted a modification of the infinitessimal
into the idea of a principal part as determined by first
terms of expansions, and made the ‘‘differential co-
efficient”’ the primary quantity. Modern text books
have returned to Newton’s method of limits as applied
to Lagrange’s differential co-efficient; there is here
offered a complete return to Newton, w1th the fluxion
or differential as the primary quantity.

The pomt of view of our development is that differ-
entiation is an arithmetical process and that its resulting
differentials are numbers like other numbers, which are
classified as independent or dependent variables ac-
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cording to the like character of the variables from which
they are derived. The usefulness of a process consists
in its practical applications, but nothing is gained by
attempting to show practical utility before the funda-
mental principles and rules of differentiation are fairly
mastered. It must be accepted at first that differentia-
tion is of as much higher order of practical value than
the usual processes of arithmetic as it is in advance of
those processes in respect to fundamental ideas. Also,
the student will have more confidence in the use of the
calculus when he learns it first as a rigorous and exact
arithmetical method. The following course of lessons
brings the student as rapidly as it is desirable into
practical applications.

One object of the author has been to discourage
empirical acquisition through illustrated examples
worked out in full. If a student is not able to follow
out careful instructions as to how to do his work,
without having it done for him, he is lacking in the
first elements of an engineer at least, and it is time that
he began mental training in that direction (even if it is
a little hard.)

Attention is called to the note on page 6 which
explaing a general principle of notation based on
dz? =dz.dz. While unusual in the case of trigonom-
etric functions, yet it is clear; 4.e., there is no conflict
between sinz? =sinz.sinz and sin.2?=sin (2). It
also removes several inconsistencies in trigonometric
notation that many students do not understand. The
ordinary notation may be used, however, if desired.

ARTHUR S. HATHAWAY.
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A PRIMER OF CALCULUS

CHAPTER I
Differentiation

1. VARIABLE AND CoNSTANT QUANTITIES. Letters
that do not denote special numbers, as do the letters
7=3.14159. . . and ¢=2.71828. . ., but which stand for
undetermined numerical values in a given problem, are
called variables or constants, according as their values
are considered to change in that problem or not. Unless
the contrary is stated, first letters of the alphabet will
denote constants, as a, b, ¢, . . . , and final letters of the
alphabet will denote variables, as u, v, w, z, ¥, z.

2. INDEPENDENT AND DEPENDENT VARIABLES. The
independent variables are those whose values are assigned
at will, each without reference to the value of any other
variable. The dependent variables are those whose
values depend upon and are determined by the values
of one or more of the independent variables. Thus,
7,y being independent variables, then u=x? v=y2,w=2xy
are dependent variables. Every problem in which vari-
ation is possible has a certain number of independent
variables; the remaining variables are dependent, and
in a general sense, each is expressible in terms of the
independent variables and constants, so that always as
many equations connect all the variables as there are
dependent variables.

8. Funcrions. A variable whose value depends upon
and is determined without ambiguity by the values of
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certain other variables is¢alled a function of those varia-
bles. Thus z2? is a function of z, and y? is a function of
y, and zy is a function of z and y. In general, any
expression that involves several variables, whose value
is computable by means of the values of its component
variables, is a function of those variables. Conversely,
any function of given variables can have, for its repre-
sentation, an expression involving the variables upon
which it depends. Suppose, for example, a function
were known for which no expression in terms of its
variables existed ; then it would be proper to make an
expression that should always stand for the value of the
function corresponding to the values of the variables
given in the expression. This was the case, for example,
with the logarithmic and trigonometric functions when
they were first considered, and the special symbols log,
sin, cos, tan, sec, etc., have been introduced as charac-
teristic symbols for these functions, so that sin z denotes
the value of the function whose characteristic symbol is
sin, corresponding to any value of z.

4. We shall often use letters as characteristic sym-
bols of undetermined functions, and not as undetermined
numbers, particularly the letters f, F, because each is
the first letter in the word ‘‘function.’”” Thus fz will
denote an undetermined function of z that can be chosen
as we please, and f(z, y) and undetermined function of =z
andy. Tomake fr one function or another is to identify
f with the process or characteristic of the function.
Thus fr==sin ¢ makes f=sin; fr==x? makes f=*‘square
of?; fr=x3—2z+43, makes f="*‘square of, minus the
double of, plus 3’’; f(z, y)=3x24-22zy—y? makes f
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stand for computing three {imes the square of the first
variable named, plus twice the product of the first and
second, minus the square of the second.

B. OriciNAL VALUEs. The original values of the
variables are those which we suppose designated by the
gsymbols of the variables, so that they are either unde-
termined values, or else the numerical values that may
be assigned to such symbols; thus =z, y, 22, y2, zy, are
undetermined original values, and z=3, y=4, z2=9,
y2=16, zy=12 are assigned original values. The ad-
vantage of leaving the original values of the variables
undetermined or literal, when carrying out processes of
computation with them, is that one such literal devel-
opment involves the results of all possible assumptions
of numerical value.

6. NeEw VarLues. New values of the variables will
be new symbols of the variables (in general the old
symbols accented) that stand for undetermined or de-
termined values that are in general different from the
original values. Thus, if z, y be original values of
two independent variables, then z/, ¥ would denote new
values of those variables, and 22, y2, zy are the original .
values, and 2’2, ¥'2, 2/y/ are the new values of the
squares and the product of the independent variables.
As numerical cases, taking z=3, y=4, we could then
take 2’=4, y'=7, so that 3, 4, 9, 16, 12 are original
values of the independent variables and their squares
and product, and 4, 7, 16, 49, 28 are new values of the
same. Again instead of these new values z'=4, y'=7,
take new values z'=3.1, ¥'=4.3, that are nearer the.
original values z=3 y=4, and the corresponding new
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values of their squares and product are 9.61, 18.49,
13.33, which are also nearer the original values than at
first. When we speak of the values of the variables,
without qualifying them as new values, we always mean
the original values. The original values of the variables
denote, in other words, the values ot the variables that
are being considered. The new values are temporary
values that are to be considered as approaching the orig-
inal values; and they are introduced, and rmade nearer
and nearer the original values, for the purpose of deter-
mining some questions of variation of the variables at
their original values, just as, in order to determine the
motion of a train at a given instant, it is practically
necessary to consider its motion for a very small time
thereafter, with the knowledge that greater and greater
accuracy is attained the smaller this time is taken, so
long as it can be accurately measured together with the
corresponding distance passed over by the train.

7. DrrrereNces. The changes of value of variable
quantities from original to new values are called differences
of the variables. A difference is denoted by prefixing
the Greek letter delta (A) to the symbol or literal value
of the variable. Thus

Arx="*‘the difference of z’’=x'—,
Ay=""*the difference of y"’=y'—.
A(z?)="‘‘the difference of z2?’’=x'2—z3.
A(y?)=="*the difference of y2"’=y'2—y?2.
A(zy)="‘the difference of zy’’=x'y/—zy.
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In the numerical cases
2‘:‘-3, y=4, and x’=4, y’ =7,
we have, -
Az=1, Ay=3, A(z?)=T7, A(y*)=33, A(z y)=16;

and for the new values '=3.1, y’'=4.3, that are nearer
the original values, we have the smaller differences,

Azr=1, Ay=.3, A(z?)==61,A(y?)=2.49, A(zy)=1.33.

8. The difference of an Independent Variable s a New
Independent Variable. In other words, if z be an inde-
pendent variable, then Az=2"—z, may be any change of
value we please. In fact the new value, «/, depends upon
the original value z, and the change of value Az, viz.,
r'=z-+Az= original value plus the difference or change
of value. The value of Ax depends neither upon the
value of z nor upon that of any other variable, but can
be taken whatever value we please. If, however, z be
what is called a real independent variable, i. e., one
limited to real values only, then Az must also be a real
independent variable. In fact, generally, the limitation
of all values of a variable to real values also limits its
changes of value or differences to real values.

9. The difference of a dependent variable is a new de.
pendent variable, whose independent variables are the origi-
nal independent variables and their differences. Thus take
the square of an independent variable, as z2, then
when z and Az are assigned we have

r'=x-+Az, and 2'?=z24-2zAz}-Ax? ¥
so that A(z?)=x/?—22=22z A 24-Az?,
which depends upon z, A z, as required.
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Similarly A(zy) =2y —zy= (24 Az)(y+ Ay) —ay
=zAy-+yAz+ArAy, which depends upon z, y, Az, Ay,
as required. Ingeneral, if w=f (z, y), then w'=f(2', ¥/)

=f (z+}Az, y+Ay), so that
Aw=f (z4-Az, y+Ay)—f(z, V),

which depends upon z, y, Az, Ay. It appears also
from this result, that even when the variables of a
function are not independent variables, the difference
of such function will depend upon its variables and
their differences in exactly the same way as if the vari-
ables were independent.

10. PrororTIONAL DIFFERENCES. Equimultiples of
simultaneous differences by the same real proportional
factor will be called proportional differences; they are

*Such symbols as Az, f z, sin z, log z, etc., which are not
separable into number factors, because one of the factor
symbols is a characteristic, and not a number, are equiva-
lent to single symbols of number, and exponents to such
a symbol should be regarded as applying to the symbol as a
whole, when no parenthesis or dot intervenes to make a
‘separation of its parts. Thus Az*=AxAx, and not the differ.
ence of z*. The latter difference is written A(x?) or A.z*. A
similar symbol is A’z=A Ar= difference of Az, regarded as a
new independent or dependent variable according as z is
independent or dependent. However, by force of usage,
and contrary to principles of notation, sin 2r means sinz? and
not sin (sin x), and similarly for the squares or other powers
of all trigonometric functions, except for the exponent —1.
Thus sin 'z is not sinz ', but conforms again to general
principals of notation in which f~ 'z stands for *that fune-.

tion whose f is z,” so that always ff ‘z=uz.
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any proportionals to the differences, if we understand
the term proportion in the sense that the ratio is a real
and not an imaginary number. The literal symbol of the
proportional factor will be N, so that NAz, NAy,
NA(z?), NA(y?), NA(zy) denote proportional differ-
ences of the variables z, y, 22, y2, zy.

E. g., let z=3, y=4, Az=1, -Ay=3, N=4, then
NAz, NAy, NA(z?), NA(y?), NA(zy)
A =4, 12, 28, 132, 64,
For the new values 2, ¥/,=3.1, 4.3, corresponding to
Azr=.1 Ay=3, which are nearer the original values
than before, and the larger factor N=49, we find,

Naz, NAy, NA(x?), NA(y?), NA(zy)
=49, 14.7, 29.89, 122.01, 65.17.

Note that although the differences have all been de-
creased in value from their first values, yet the corres-
ponding increase in the proportional factor has left the
praportional differences about the same as before.

11. DirrerenTIATION. Differentiation is the process
of finding limits of proportional differences of variable
quantities, as the differences tend toward zero and the
proportional factor tends towards infinity. Such limits
are called differentials of the variables. A differential is
denoted by prefixing the letter d as characteristic of
differentiation to the literal value of the variable. Thus,
for independent variables, z, v,

d r=differential of z=lim N Az=Ilim N(z'—2z),
dy=differential of y=lim NAy=lim N(y'—y).

The hypotheses of this differentiation of independent
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variables, z, v, are firstly, that the differences approach
zero (or the new values approach the old) while the
proportional factor correspondingly approaches infinity,
so that the proportional differences approach limits, and
secondly, that these limits are designated by dz, dy.

Turning to dependent variables, we have similarly

d(2?)=lim NA(z?)=lim N@? —ax?)
=lim.[(@'+%) N(¥—2)]=2zdx ;¥

d(y?)=lim NA(y?)=lim N(y'? —y?)
=lim [+ N G'—y)]=2y dy;

d(zy)=lim N A(zy)=lm N(z'y'—zy)
—lim [y'N (¢—=)-+=N(y—y)]=ydz-+ady.

As further exercises show similarly that d(x3)=3z2dxz,

1 dz dzx
do=—7—% dJz= SN d(z?y8)=2zy3dx+}3z2y2dy.

12. To understand differentiation, and the exact
signification of the resulting differentials as variable
numbers, some points in the process of differentiation
must be discussed more fully, and in particular they
must be illustrated by numerical values.

13. The differentials of independent variables are mew
independent variables. 1In illustration, to make dr=>5, we
may take successively

*Observe that since z” approaches z, therefore z’+z ap-
proaches 2z, and also that N increases as z” approaches z,
8o that N(2z’—z) approaches the limit, dz. The limit of a
product being the product of the limits of its factors, we
therefore find that lim [ (2/4-z).N(2/—2z) ]=2xdx.
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Ar=1, .1, .01, 001, . . .. limit=0
N—4, 49, 499, 4999, . . . . limit—co ;
then NAr=4, 4.9, 4.99;4.999, . ...  limit=5,

Thus, in this way, we determine
dr=lim N Ax=5.

If instead of the aboveseries of values of N we should
take another in which every proportional factor becomes
double its preceding value so that we have successively,

N=8, 98, 998, 9998, . . . .

then with the same series of values of Az as before wc
should find,

NAz=S8, 9.8, 9.98, 9.998, . . . . limit—10,

which gives another value dz,=lim NAx,=10,

which is also double the preceding value of dr. In
general dx can be determined any value we please with-
out regard to the value of z or of any other variable,
since the value of Az may be assigned at will, and its
series of values approaching zero, assigned likewise
as we please, in respect to value and law of contin-
uation, so that wbatever series of values approaching
infinity may have been already assigned to NN, we can
make the proportional difference NAx take a series of
successive values that will approach any limit we please:

Take, for example, Ax=aw, which gives, as N in-

creases indefinitely, a corresponding value of Az that is



10 A PRIMER OF CALCULUS

approaching zero as required; then the series of values of
N Az will be

NAz=a, a, a, ..

whose limit approached is a. Or take

Az=a N / (N2+4-5)=a / (N+l57) which approaches
zero; then

Nas=aN? / (N48)=a/ (14 2p),
which approaches a.

There are, in fact, an innumerable number of different
ways of making each independent difference approach
zero, and the common proportional factor approach in-
finity, so that the proportionals of those differences shall
each approach any assigned value we please. If, how-
ever, we are considering a real independent variable, z,
then since NV and Az are real; therefore NAz is real and
must approach a real value. In words, the differential
of a real independent variable is a mew real independent

variable.

14. Understand that in the differential process such
as Ar=1, .1,01, .001, . . .., and N=4, 499, 49, 4999,
., in which the limit of N Az is sought, we do not
consider Az as ever actually zero, or N as actually in-
finity, so that we are not trying to find a value of
“‘infinity times zero.”” In fact, a little common sense
will show that since neither zero nor infinity are any
actual values, therefore ‘‘infinity times zero’’ is a
phrase that is in itself meaningless. Nor can this
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phrase be given a definite meaning in accordance with
the usual acceptance of zero as denoting the nominal
limit of a value that becomes smaller and smaller
without limit of smallness, and of infinity as the nom-
inal (but not-existing) limit of a value that becomes
larger and larger without limit of largeness. Since one
factor of a product can become smaller and smaller,
‘and the other factor larger and larger, so that the
product shall approach any value we please, it follows
that even these limit ideas of zero and infinity cannot
give determinate significance to infinity times zero.
Should the student see cause, from these facts, to ob-
ject to the independent differentials as too indeter-
minate in value for mathematical consideration, then
the same objection would be equally valid against any
independent variables, and against the whole idea of
variation of value, which must be founded on the
initial idea of certain indeterminate values, which can
receive or change value at will, and of other related
values which depend upon these undetermined or inde-
pendent values.

15. The differential of a dependent variable is a new
dependent variable that i dependent upon and determined by
(i. e., a function of) the independent variables and their
differentials. This result is a matter of definition and
as a test of differentiability. For the only way in
which the limit of the dependent proportional differ-
ence might be changed in value, without changing the
values of the independent variables and their differentials,
would be to take different series of values of the inde-
pendent proportional differences, but not so as to change
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their assigned limits; and when such variations of ap-
proach, alone cause variations in the limit of the de-
pendent proportional difference, we may consider that
there is no definite limit or differential, and that the de-
pendent variable is therefore non-differentiable. The
test of differentiability is therefore the determination of
the dependent differential solely in terms of the inde-
pendent variables and their differentials.

16. Forexample, 22 is differentiable, because d(x?)=
lim NA(z?)==lim (z'4=z). N(z'—x)=22dz, an expres-
sion that is definitely obtained in whatever way we
suppose 2’ to take an indefinitely continued series of
values that approach the limit x at the same time that
N takes a corresponding series of larger-and larger values
so that N(x’—=x) approaches the limit dx. Similarly
x y is differentiable, because we find invariably

lim NA(xy)=lim ( N Ax4-xN Ay)=y dx-}=x dy,

in whatever manner Ax, Ay approach zero and N ap-
proaches infinity so that we have lim NAx=dx,
lim NAy=dy It will be found that all ‘‘continuous’’
variables,* for which expressions known to the student
exist, are differentiable, except that in some expres-
sions, for certain values of the variables involved, it

#¢Continuous’’ means varying by small amounts when
the variables change by small amounts, the dependent
change approaching zero when the independent changes do
so. The expression fr=z+ integer part of z, is not continu-
ous at integral values of z; viz. when z’ increases towards
2, f x’ increases toward 3, but f2=4, so that fz’—fz does
not tend to vanish as 2/ approaches z=2.
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may happen that the value of the differential is ambig-
uous. This will be shown in the differential expres-
sion itself, so that it need not be regarded as affecting
the general differentiable character of the variable in
question.

17, The differential of a function of one or more varia-
bles is the same function of its variables and their differen-
tials, whether the variables are all independent or one or more
of them are dependent.

This is a consequence of the definition of differentia-
bility which makes a function, w=f(x, y) that is differ-
entiable have a differential,

dw=1lim NAw=1im N [f(x+Axz, y+Ay)—f (=, )],

that is a definite expression in terms of x, y, and dx=
lim NAx, dy=lim NAy; say dw=f(x, y, dx, dy).
If such a result holds when x, ¥ are independent vari-
ables, so that we have arbitrary methods of making
lim NAx=dx, lim NAy=dy, in which dx, dy, are
arbitrarily selected values, then it must all the more be
true when we have only certain dependent methods of
making lim NAx=—dx, lim NAy—=dy, where dx, dy are
dependent values. In other words, the dependent
methods of approach, and the dependent limits, are
included among the arbitrary methods of approach and
the arbitrary limits. Thus

dy*)= lim (y+y)Nay=2ydy,

whether y is independent, so that lim NAy==dy is also
independent, or whether y is dependent, so that
lim NA=dy is also dependent. In the latter case there
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remains the finding of dy in proper terms, from the
value of y in terms of the independent variables, before
the differentiation of y2? can be considered as com-
pleted. Similarly d(xy)=ydx-4xdy, whether x, y are
independent or dependent variables; and if we have
actually y=x2?, so that dy==2xdx, then xy=x3 and
d(x3)=x2dx4x .2xdx=3 x2dx. Although this result
is obtained indirectly yet it must verify directly. Thus,

NA(z8)=N(x' 8—x3 )=(a" 2 4-2/x}2? )N(x'—?c)

whose limit [as 2’ approaches  and N increases so that
N(2’—=x) approaches dz] is easily seen to be 3z2dz.
Again, in d(zy)=y dz+42zdy, we can put y=x3 so that
d y=32? d z, and making these substitutions for y and
dy, we find

d(x4)=:;:3dx+x. 3z2de—4r3dzx.

Let the student verify this result directly, and also go
over the differentiation of the product zy which gives
the value d(zy)=ydz+-zdy, and try to find how any
supposed dependence of ¥ upon z could do more than
make dy correspondingly dependent upon z and dz
(assuming, of course, that the given dependence of ¥
upon z makes it a differentiable function.)

18. The differential of a given function is therefore
seen to be a fixed rule for differentiating that function,
even when its variables, instead of being simple inde-
pendent variables, are any complex functions of other
variables. Thus from d(u?)=2 udu, we have it equally
true, by replacing u by z2-4-y?, that
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d.(@*+y?) =2y 4y?),

which finally reduces to

4(z24-y?) (z daty dy),
since we will find that

d(z2+y*)=2(z do—+y dy).
It is on this account that rules of differentiation become
important and of wide application, whether expressed
in terms of one set of letters or another, since it will be
indifferent what letters are employed to denote the
variables. In fact the more important rules are best
memorized in words.
19. Thus,
d(zy)=y dz+=z dy,
is in words: The differential of a product of variables
equals the sum of the products consisting severally of the
differential of each factor into the remaining factor. This
rule extends, also, to a product of any number of
factors, e. g., .
d(zy2)=yzdztrzdy+zydz; etc.

To prove this, let the product 2y z change to 2’ y z, then
to 2’9z, then to 2’y 2. This is a succession of partial
changes of value due to first changing « alone, then y

alone, then z alone, and the sum of these partial changes
equals the total change. Thus,

2y —xye=(2"yr—2x y 2) +(d'y'=—x"yz) - (&'y'7 —2'y'z)

or
A(z y 2)=y zAx4-2"2Ay4-2'y Az.
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Multiplying this equation by IV and remembering that
d=lim N A,
and
lim #’=z, lim y'=y, etc.,
we find,
dzy2)=yzdz4xzdy+zryda.

20. When the values of the variables of a function are
assigned, then the value the differential of the function varies
proportionally with the values of the differentials of its
variables. For, let z, y,..., be the assigned values of the
variables, and w the corresponding value of the function;
then Aw will be assigned - when Az, Ay, ... are assigned,
and lim NAw is determined when lim NAz, lim NAy,...
are determined. If the latter limits be made z,, y,,.
and the former consequently becomes w,, then to make
the latter change proportionally to kz,, ky,,-.., we have
only to take new multipliers each k times as large as
before, with the same values of Az, Ay... as before, since

lim k NAz=k lim NAxz=k z,,lim k NAy=Fk lim Nay=ky,,

etc. But in this method of approach each Aw remains
the same as before, and the limit of the new propor-
tional difference is

lim & NA w=k lim NA w=k w,.

In other words, if w,, z,, y,,-- be corresponding values
of dw, dz, dy,..., and we change dz, dy,... proportionally
to new values kz,, ky,,..- then dw changes in the same
proportion to the new value kw,.
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21. Since proportional factors must be real num-
bers, it follows that the proportional factor k of the
preceding proposition must be real and not imaginary.
An important consequence of that proposition is that:
In the differential of a function of one real variable, the differ-
ential of the variable appears only as a factor of the result,
or,

dfr=f'x dx

where f'z is a function of z called the differential co-
efficient of fx as to z, and also, the derivitive of fx as toz.
In fact x being assigned, if any two values of dx are in
the ratio k:1, (where k must be real because z and
therefore dz are real variables) then the corresponding
values of dfz are in the same ratio by Art. 20; thus
the quotient dfz/dx does not change value when dx
changes value; and thence this quotient depends on
_the value of z alone, so that it is some function, f'z,
of z.

22. The theorem of Art. 21 does not hold for all
functions, when the variable is not limited toreal values.
Thus if z=z+4yv'—1 be an imaginary variable whose
real components are z, y, then

mod z=,/ (z2+4y?)
is a function of z, whose differential will be, as the
student may verify by the work in full,
d mod z=(z dz+4-y dy) ~mod 2.

If this differential contain dz=d z-+./—1.dy as a factor
only, so as to be of the form fzdx 4 ,/—1f'2dy what-
ever values dz, dy may have, then
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Jz==x/mod z=y /(mod z,/—1), or =—y . J—1

which is impossible, remembering that z, y are any
real values. On the contrary

d.22=2z2dz, d.23=322dz, etc.

23. AnavvricaL Funcrions. Any differentiable
function of one variable, whose differential contains the
differential of its variable only as a factor, is called an
analytical function. Any fanction of a real variable is
(art 21) an analytical function; but for an imaginary
variable z, mod z is not an analytical function of z,
while 22, 28, etc., are such.

24. DerivatioN. Derivation isthe process of differ-
entiation followed by division by the differential of a

variable. The result of derivation is the derivative of

the function as to the varwable, and must be a function of
the variable alone if derivation is possible. In other
words, derivation is a process that is applicable only to
analytical functions of one variable. Derivation can
have a definition of its own not depending upon differ-

entiation, viz., it is the process of finding the limit of .

the quotient of the difference of the function by the
difference of the variable as the differences approach
zero, provided there is a definite limit depending on the
value of the variable alone, and not at all upon the
manner of approach of its difference to zero. This fol-
lows from

dfzr —lim NAfz —1lim Afz

dx Naz Az’
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Exampres. I

1. If =3, y=4, and we take successively Az=1,
.7, .07, .007, and so on smaller and smaller, Ay=2,
1.3, .13, .013, and so on smaller and smaller, then find
the corresponding series of values of

A@?), A®y?), A(zy).
2. If in Ex. 1, we also take successively
N=1, 9, 99, 999, and so on, larger and larger
show that we thus determine '
dr=T, dy=13, d(z?)=42, d(y?)=104, d(zy)=67,
and verify the last three from their literal values
d(z*)=2zdz, d(y*)=2ydy, d(ry)=ydz—+t=dy.

3. Ifin Ex. 2 we double each value of N in its series
of values, show by full numerical computation, that the
values of dx, dy and also those of the dependent differ-
entials are doubled.

4. Show.that, if =3, y=4, then however we make
Az, Ay approach zero and N approach infinity so that
NAz, NAy, approach 7, 13, respectively, we shall have
NA(z?), NA(y?), NA(zy) approaching the limits 42,
104, 67, respectively. '

[NA(z2)=N[(3+4Ax)2—9]=6.NAz+4-Az.NAz, etc.]

5. Prove that d(22)=2zdz, d(y3)=3y?dy, d(y®)=
6ySdy. Also prove the last equation from the preced-
ing ones, by putting z=y83.
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6. Prove that
1 dr ,1 2dy 1 4dx
d;'——--—x—a-, d;ﬂ‘=_y_8’ d;—;:—?—.

Also verify the last equation.by taking y==x? in the
second.

7. Prove that

dfe=dz /22 _ dJ (22 +y*)=(2dztydy) / J (@*+y*)

Also verify the last equation by putting z=2x2-4-y? in the
first. Also verify the first from (/2)?=2.

8. Prove that d./(a2+82)=sds/ J(a?<4-s?).

9. Prove that d.yt=4y¥dy.

(A =yt —pi=(y*—y*) / (VI +ytyi +3t), ete, or
let w=y?, then w3=y*, whence 3w2dw=>4y3dy, etc.]

10. Prove that d(z3—3x2-}62—4)=3(x?—22}2)dz,
and that
d.(23—3224-60—4) 4=

12(2—3x2 4- 62 —4) 3 (x2—22-+4-2)dx.

11. Prove that d(az4-by)=adz4-bdy. Thence show
that the characteristic d of differentiation is distributive
over a sum and commutative with a constant factor, just
ag if it were a number multiplier.

12. Prove that d. %=M State this as a rule
for differentiating fractions.

2
13. Prove that d. L-— %(2xdy__3ydx).

x3
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o 2uy+y?
14. Prove that dW——O,

also that d [(z+ 5)2 — 22 —102]=0.
15. If m, n be any given positive integers, prove that

m m
- m—_—-—1
dz, d.x Pe=——g® dz.

L -1
n

m
dza="42
n
State this result as a rule for differentiating powers to

fixed fractional exponents.

-

m
[Let y=x;’ then.y?=zm y'n=z'm and y® —yo=
zm—zm which may be written,

Py 2y y oy (f—y)=
(fm—lym—2y . fogm—t g gml) (F—i),

Multipling this by N and proceeding to the limits,
lim #’=x, lim y/=y, lim N (2’—)==dz, lim N (y'—y)=dy
we find ny*—ldy=mz™—dr, and divided by y* =z, this
isndy /y=mdzx 7z, or dy=% yd?x ete.]

16. Prove that d.z$yt=4ciyidr4frtyidy.

17. Show that the successive derivatives of
28 —Tz44-428—9x24-20—7,

are 5x4—282841222—18x4-2.
2028 —84x24-242—18,
60x2—168z+-24.
1202—168,
120,
0.
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18. Show that the successive derivatives of (14=z)4
are 4(14-2)3, 12(14-2)2, 24(14-x), 24, 0.
19. Take various algebraic expressions and differ-

entiate them by the full process, and also by rules,
i. e., by examples already worked.

20. Expand (14-z)* by derivation.

[We know that (14-z)*=A+ Bz+Cx2+4Dx34-Ex*,
for all values of z, where 4, B, C, D, E, stand for some
unknown numerical coefficients. Deriving this equa-
tion we find other identities,

4(1+4-z)3=B+4-2Cx+3Dx? -4 Ex3
12(14-2)2=2C4-6 Dz4-12 Ex?
24(14-x)=6D+-24 Ex
24—24F
Taking z==o0 in these equations, since they are iden-
tities and so true for all values of z, we find A=1, B=4,
C=6, D=4, E=1, and,

(14-2)t=1-4-424-622 428 -x4.]
21. Expand (14z)® by derivation.

[(Aar = 1pnat 2D 5oy 2OZD) 0Dy

where 21=2.1, 31—3.2.1=6, 41=4.3.2.1=24, etc.]

22. Expand z3—3z2+4-27—1 in ascending powers of
r—4, by derivation.

[x8--8x24-22—1=234-26(2—4)+9(z—4) 2+ (2—4)3].
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CHAPTER 11
Principles and Rules

25. PrincipLE 1. If two variables are always equal,
or if they always duffer by a constant, then their differentials
are always equal.

For, let z, y be original values of two variables and
2/, ¥ any new values as near as we please to the original
values, then the conditions are, if the variables are
always equal, that y=x and y’=2’, or if the second
always exceeds the first by a constant ¢, that y=z--c,
y'=2/4-<¢. In either case y¥—y=r'—=, and therefore
N(@y'—y)=N(z'—=z), and as the new values are made
to approach the old, while N increases so that either
member approaches a limit, the other member must
approach the same limit, <. e., dy=dz.

26. The proof of the above principle shows under
what circumstances the differentiation of equals gives
equals, viz.,, the equation must remain true when the
variables change from their original values by any cor-
rasponding amounts, however small. This principle
is therefore not applicable to such an equation as
22—3z4-2=0, which is true for certain values of
2 (=1 or 2), but which does not remain true, when =
changes from those values. The equations to which
the principle applies are of three classes, first, absolute
tdentities, such as (z-4-y)2=x2-42xy+4y?; second, limited
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identities which are equal only for certain ranges of value
of the variables, such as 1/ (1—2)=1+4z+4=z2+2z3+,
etc., which is true only when z is smaller than 1; and
thirdly, equations that practically define one of the
variables in terms of the others, such as z?4-y2=qa?
which makes y=./(a?—22).

27. An alternative form of Principle 1 is that :

The differential of a constant quantity is identically zero.

For a constant can be made a function of any vari-
ables we please, as 2=2-2—x, 1=z /1, etc.; and as
such a function, its change of value is zero; likewise
any proportional change of value is zero, and hence the
limit of such proportional change, or the required dif-
ferential, is zero.

28. Inverse PrINcIPLE 1. If the differentials of two
variables are always equal, then the variables are either
always equal or always differ by a constant quantity.

Two proofs of this will be given later, one geometric,
and one algebraic. An alternative of this inverse prin-
ciple is: ’

(a). If the differential of a quantity is identically zero,
then that quantity 18 a constant.

29. PrincipLE 2.  The characteristic, d, of differentia-
tion, 18 distributive over a sum, and commutative with a con-
stant factor. In symbols,

d(z4y)=dz+dy, d.az=aq dx.

The proof will be left as an exercise. It is one of the
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first results the student would naturally notice in the
practice of differentiation, and he would probably state
it in some such form as, the differential of a sum s the
sum of the differentials of its terms, and, the differential of
the product of a constant and a variable i3 the constant into
the differential of the variable. It is, however, important
to consider it in the above form as a gymbolic law of the
characteristic d. The second part is really a conse-
quence of the first, viz., d.2r=d(z+r)=dr4-dr=2 dz,
etc.

30. By the partial differentiation as to x, of a function
of two or more variables z, y, etc., we mean differen-
tiation as if = were the only variable, and the others
were constants. The characteristics of partial differ-
encing and differentiation as to = will be A, d, and as
usual d;=1lim NA,. Thus

A, (22y8)=2'2y8—1x2y3, d,(x2y3)=2zxyddx.
Similarly,
Ay (z2yd)=aty'3—ay8, dy(z2y®)=3z2y2dy.

31. A partial differential as to z is simply a special
value of the complete differential corresponding to any
value of dz, and the values dy=—o, dz=o0, etc., since
these are the values of dy, dz, that result by making
¥, 2, constants. Thus if )

df (z,y,2)=f'(z, dz, y, dy, 2, d2),
dzf (2,9, 2) =f'(z, dz, ¥, 0, 2, 0), etc.
82. PrincipLE 8.  The complete differential of a func-

then
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tion of several variables equals the sum of its partial differ-
entials as to each variable. In symbols,

df(z,y, 2) =dof (%, y, 2)+dy f (%, 9, 2)4d.f (2,9, 2).

For let the complete change be made first by chang-
ing z alone, then y alone, then z alone, giving the
successive partial changes from f(z,y,2) to f(&,y,2)
to f(«,y,2) to f(«,y,7) which are denoted by
Af(%y,2), Af(@,y,2), A:f(,y,2). The com-
plete change of value of the function is easily seen to
be the sum of these successive partial changes of value,
i e,

Af(®,9,2) =B f (2,9, +A,f @,9,2) +A. f@,¥,2).

Multiplying by N, we find an analagous result for the
proportional differences, which is precisely the principle
for differentials we wish to prove, except that the
,original values of the variables in the proportional
differences are in the second, z’ instead of z, and in the
third, 2/, ¥ instead of z, y. However, «/, 2/, become
z, ¥y in the limit, and the proportional differences
become the differentials, so that if the general differ-
ential is a continuous function of its variables, «/, ¢’
will be replaced by z, y in the differentials. For ex-
ample in NA, f (¥, y,2) in which «’, z are treated as con-
stants, when % is very nearly y, this proportional dif-
ference is by definition, very nearly d,f(«,y,2), and
this will be very nearly d, f (z, y,z) when #’ is very near
z, if the latter differential is a continuous function,
i.e., if df(z,y,2z) is a continuous function (of which
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dyf(x,y,2) is a special value obtained by making
dr=0, dz=0.) Thus

df(x’ Y, z)=d-'cf (x’ Y z)+dyf(z, Y, z)+dzf(x, Y, Z))

assuming, as is always the case in the calculus, that the
functions considered are continuous, so that limits are
found by substituting the limits of the variables.

33. That the limit of f2’ as 2’ approaches z is not
always the same as fr, may be seen from the example
fr=x+4 integer part of z; taking z=2 and 2’ less than
and approaching 2, f&’ approaches, 3, but fr=4. This
cannot occur when fr is continuous, since then by
definition, fr'—fr approaches zero when 2’ approaches
z, and therefore fr’ approaches fx.

34. When z,v,2, are real variables, or, more gener-
ally," when w=f(z,y, 2) is an analytical function of its
variables whether they are real or imaginary, then by
Article 21 d;w /dz is independent of dz, and therefore
" a function of z,%,z alone. This quotient is called the
partial derivative of w as te z, and is denoted by dw 9z,
the script d being notice of partial differentation, while
the denominator shows the variable of differentiation.
In this notation, we have.

.
=f,(%,¥,2) do+f, (2,9, 2)dy-+f3 (2, ¥, 2)dz.
856. The use of Principle 3 greatly simplifies the dif-

ferentiation of many complicated expressions. In the
first place it reduces differentiation to the consideration

(). dw= %u_) dr+ ‘z—z dy+- 99—‘: dz
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of one variable at a time, and secondly, an expression
involving one variable only may be made a function of
several variables by replacing selected component parts
of the expression by new letters for the time being;
thence differentiating as to the several variables and
adding, we find the differential of the whole. Thus

d.x2=d.xy, where y=z, =d . .xy-+d, .7y
=y dr+2 dy=rndz+t2dr=2 zdz;
d.z3=d.z.zx.s=22dz4z2dr-}22dz=38 22dz;

and in general, if n be any positive integer, then,

dxr=d.z.z... to n factors=2"1dz-4-2"1dz ...
to n terms =mnz"—1dz.

It is not necessary to replace each component ex-
pression that is fixed upon as a single variable by a
new letter, since a little practice in retaining the idea
of its singleness of value as distinct from other such
gingle values into which the expression may be con-
ceived as separated, will accomplish the same purpose,
and be shorter and easier. The above differentiations
of 28 and 2™ are examples of this, in which each factor
z is conceived as distinct from every other such factor
for the purposes of partial differentiation as to that
factor, without the necessity of displacing it by another
letter for the time being.

PowERs

86. Rure 1. To differentiate a power with a constant
rxponent, multiply the power by its exponent and the differ-
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“wtial of its base, and divide the result by the base, In
ymbols

dxP=p.xPdx /r=pxP—1dzx.

The proof of this rule for any real exponent p»

v be made to depend upon the theorem that
(y»—1) /(y—1)=p when lim y=1. This is
proved when p is a fracition, +=m/n, by dividing out

" the common factor y*7 —1 from numerator and de-

nominator before putting y=1; then if p is an incom-
mensurable number between the fractions ¢, ¢/, in order
of magnitude, the quotient (y»—1)/(y—1) will lie
between the similar quotients found by replacing p by ¢
and ¢/, and its limit will therefore be between ¢ and ¢'.
Thus since this limit always lies between the same two
fractions as p does, it must be p. Hence

(yP—1)z?
y—1)=z
where y=z2'/z, and therefore approaches 1 as «’ ap-

proaches z. Thus

d.x? =lim NA.2P=pzPdz /z=pxP—1dz.

NA.2P=N@'P—zP)= NAz,

To prove this rule for imaginary exponents, it must
be necessary to define such powers. It might be made
a condition of that definition that the above rule should
be true, and this would, in fact, be sufficient to deter-
mine such powers in connection with the condition
that 17 =1,

87. Generanizep Rurk 1. Tb differentiate a product
of powers, each with a constant exponent, multiply the pro-
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tion of several variables equals the sum of its partial differ-
entials as to each variable. In symbols,

af (z,y, 2) =dof (%, ¥, 2)+dy f (2,9, 2)+d.f (2,9, 2).

For let the complete change be made first by chang-
ing z alone, then y alone, then z alone, giving the
successive partial changes from f(z,%,2) to f(¥,v,2)
to f(#,v,2) to f(@,y,7) which are denoted by
Af (%,9,2), A f(@,9,2), A:f(@,y,2). The com-
plete change of value of the function is easily seen to
be the sum of these successive partial changes of value,
i e.,

Af@,Y,2) =Bof (2,9,2) +A,f @,9,2) A, f(@,7,2).

Multiplying by N, we find an analagous result for the
proportional differences, which is precisely the principle
for differentials we wish to prove, except that the
.original values of the variables in the proportional
differences are in the second, «’ instead of z, and in the
third, 2, ¥ instead of z, y. However, «, ¥/, become
z, ¥ in the limit, and the proportional differences
become the differentials, so that if the general differ-
ential is a continuous function of its variables, #/, ¥
will be replaced by z, y in the differentials. For ex-
ample in NA, f(,9,2) in which «/, z are treated as con-
stants, when 3’ is very nearly y, this proportional dif-
ference is by definition, very nearly d,f(«,v,2), and
this will be very nearly d, f (2, ¥,2) when 2’ is very near
z, if the latter differential is a continuous function,
i.e., if df(z,9,2z) is a continuous function (of which
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dyf(z,y,2z) is a special value obtained by making
dr=0, dz=0.) Thus

df (*,y,2)= oS (%Y, Z)+dz/f(x’ Y, z)+d2f(x7 Y, 2),

assuming, as is always the case in the calculus, that the
functions considered are continuous, so that limits are
found by substituting the limits of the variables.

33. That the limit of f2’ as ' approaches z is not
always the same as fr, may be seen from the example
fr=x+ integer part of z; taking =2 and 2’ less than
and approaching 2, f2’ approaches, 3, but fr=4. This
cannot occur when fr is continuous, since then by
definition, fr'—fr approaches zero when 2’ approaches
, and therefore fx’ approaches fz.

34. When ,v,2, are real variables, or, more gener-
ally," when w=f(z, v, 2) is an analytical function of its
variables whether they are real or imaginary, then by
Article 21 d,w/dz is independent of dz, and therefore
a function of x,v,z alone. This quotient is called the
partial derivative of w as to z, and is denoted by dw /dz,
the script d being notice of partial differentation, while
the denominator shows the variable of differentiation.
In this notation, we have.

dw dw dw
(@). dw= o dz+ 3y dy+ 2 dz

=f1 (x7 Y, z) dx+f2 (x: Y, z)dy+fa (x, Y z)dz-

85. The use of Principle 3 greatly simplifies the dif-
ferentiation of many complicated expressions. In the
first place it reduces differentiation to the consideration
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tion of several variables equals the sum of its partial differ-
entials as to each variable. In symbols,

af (@9, 2) =dof (2,9, 2)+dy f (%, 9, 2)+d.f (2, 9, 2).

For let the complete change be made first by chang-
ing z alone, then y alone, then z alone, giving the
successive partial changes from f(z,,2) to f(z,,2)
to f(«,y,2) to f(2,y/,7) which are denoted by
Af(n,y,2), 8,92, A:f(@,¥,2). The com-
plete change of value of the function is easily seen to
be the sum of these successive partial changes of value,
i e,

Af@,,2) =Bof (2,9,2) +A, f (@9, A, f @, 7 ,2).

Multiplying by N, we find an analagous result for the
proportional differences, which is precisely the principle
for differentials we wish to prove, except that the
.original values of the variables in the proportional
differences are in the second, 2’ instead of z, and in the
third, «/, ¥ instead of z, y. However, «, 7/, become
z, ¥ in the limit, and the proportional differences
become the differentials, so that if the general differ-
ential is a continuous function of its variables, «/, ¢’
will be replaced by =, ¥ in the differentials. For ex-
ample in NA, f(«/,y,2) in which «/, z are treated as con-
stants, when 3’ is very nearly y, this proportional dif-
ference is by definition, very nearly d,f (%, v,2), and
this will be very nearly d, f (z, y,2) when 2’ is very near
z, if the latter differential is a continuous function,
i.e, if df(z,v,2) is a continuous function (of which
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dyf(z,y,z) is a special value obtained by making
dr=0, dz=0.) Thus

af =y, z)=d-’tf (2,9, z)+dyf =y, z)+d1f (z,9, 2),

assuming, as is always the case in the calculus, that the
functions considered are continuous, so that limits are
found by substituting the limits of the variables.

33. That the limit of f2’ as 2’ approaches z is not
always the same as fr, may be seen from the example
fr=x+ integer part of z; taking =2 and 2’ less than
and approaching 2, f’ approaches, 3, but fr=4. This
cannot occur when fr is continuous, since then by
definition, fr'—fx approaches zero when «' approaches
z, and therefore f2’ approaches fz.

34. When z,v,2, are real variables, or, more gener-
ally," when w=f(z, y, 2) is an analytical function of its
variables whether they are real or imaginary, then by
Article 21 d,w/dx is independent of dx, and therefore
- a function of z,y,2 alone. This quotient is called the
partial derivative of w as te 2, and is denoted by dw /dz,
the script d being notice of partial differentation, while
the denominator shows the variable of differentiation.
In this notation, we have.

(@). dw= ?9_:0 dz+- %% dy-- %f’: dz
=f,(2,y, 2) da-f, (2,9, 2)dy—+f;5 (=, ¥, 2) dz.

3b. The use of Principle 3 greatly simplifies the dif-
ferentiation of many complicated expressions. In the
first place it reduces differentiation to the consideration
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tion of several variables equals the sum of its partial differ-
entials as to each variable. In symbols,

af(z,y, 2) =do f (%, y,2)+dy f (2,9, 2)4d.f (2,9, 2).

For let the complete change be made first by chang-
ing z alone, then y alone, then z alone, giving the
successive partial changes from f(z,y,2) to f(,y,2)
to f(«,y,2) to f(«,y,7) which are denoted by
Alf (x’ Y, Z), Al/f @, Y Z)' A, f (xl7 3/) Z)' The com-
plete change of value of the function is easily seen to
be the sum of these successive partial changes of value,
i e.,

Af@,Y,2) =Daf (@y,2) +0,f @9, +8, f@,¥,2).

Multiplying by N, we find an analagous result for the
proportional differences, which is precisely the principle
for differentials we wish to prove, except that the
.original values of the variables in the proportional
differences are in the second, z’ instead of 2, and in the
third, «, ¥ instead of z, y. However, 7/, 4/, become
z, y in the limit, and the proportional differences
become the differentials, so that if the general differ-
ential is a continuous function of its variables, 2/, y'
will be replaced by z, y in the differentials. For ex-
ample in NA, f (¥,y,2) in which 2/, z are treated as con-
stants, when ¥ is very nearly y, this proportional dif-
ference is by definition, very nearly d,f(¥,v,2), and
this will be very nearly d, f (z, y,2z) when 2’ is very near
z, if the latter differential is a continuous function,
i.e., if df(z,y,z) is a continuous function (of which
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dyf(x,y,2) is a special value obtained by making
dr=o0, dz=0.) Thus

df (Z, Y, Z)=d,f (x) Y, ’-)“I‘dyf (:t, Y, z)+d2f (x’ Y, z))

assuming, as is always the case in the calculus, that the
functions considered are continuous, so that limits are
found by substituting the limits of the variables.

33. That the limit of fx’ as «’ approaches z is not
always the same as fr, may be seen from the example
fr=2+ integer part of z; taking z=2 and 2’ less than
and approaching 2, fr’ approaches, 3, but fr=4. This
cannot occur when fr is continuous, since then by
definition, fr'—fx approaches zero when z' approaches
z, and therefore fz’ approaches fx.

34. When g,v,z, are real variables, or, more gener-
ally, when w=f(z, v, 2) is an analytical function of its
variables whether they are real or imaginary, then by
Article 21 d,w/dz is independent of dz, and therefore
a function of z,v,z alone. This quotient is called the
partial derivative of w as to z, and is denoted by dw 9z,
the script d being notice of partial differentation, while
the denominator shows the variable of differentiation.
In this notation, we have.

dw dw dw
(a). dw= e dz4- By dy+ 5 dz

=f1 (z,9, z) dx+f2 (=, Z)dy"'fa (2,9, z)dz°

35. The use of Principle 3 greatly simplifies the dif-
ferentiation of many complicated expressions. In the
first place it reduces differentiation to the consideration
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tion of several variables equals the sum of its partial differ-
entials as to each variable. In symbols,

df (z,y, 2) =d.f (2, ¥, 2)4dy f (2,9, 2)+d.f (2,9, 2).

For let the complete change be made first by chang-
ing z alone, then y alone, then z alone, giving the
successive partial changes from f(z,y,2) to f(¢,¥,2)
to f(«,v,2) to f(@,y,7) which are denoted by
Azf(x) Y z)y Ayf(z') Y z)' A, f(xly ?/7 2). The com-
plete change of value of the function is easily seen to
be the sum of these successive partial changes of value,
i e,

Af(,:2) =B f (@,9,2) +A,f (@9, +A. f @, ¥,2).

Multiplying by N, we find an analagous result for the
proportional differences, which is precisely the principle
for differentials we wish to prove, except that the
.original values of the variables in the proportional
differences are in the second, 2’ instead of z, and in the
third, /, ¥/ instead of z, y. However, 2/, ¥/, become
z, y in the limit, and the proportional differences
become the differentials, so that if the general differ-
ential is a continuous function of its variables, 2/, ¥’
will be replaced by z, ¥ in the differentials. For ex-
ample in NA, f(2,,2) in which , z are treated as con-
stants, when ¥ is very nearly y, this proportional dif-
ference is by definition, very nearly d,f(z,v,2), and
this will be very nearly d, f (2, y,2) when 2’ is very near
z, if the latter differential is a continuous function,
i.e., if df(z,v,2) is a continuous function (of which
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dyf(z,y,2) is a special value obtained by making
dr=0, dz=0.) Thus

df (Z, Y, Z)=dzf (x) Y, z)+dyf (x’ Y, z)+dzf (Z, Y, z),

assuming, as is always the case in the calculus, that the
functions considered are continuous, so that limits are
found by substituting the limits of the variables.

33. That the limit of f2’ as 2’ approaches z is not
always the same as fx, may be seen from the example
fr=x+ integer part of z; taking r=2 and 2’ less than
and approaching 2, f»’ approaches, 3, but fr=4. This
cannot occur when fr is continuous, since then by
definition, fr'—fz approaches zero when =’ approaches
z, and therefore fx’ approaches fz.

34. When «,y,2, are real variables, or, more gener-
ally, when w=f(z,y, 2) is an analytical function of its
variables whether they are real or imaginary, then by
Article 21 d,w/dz is independent of dz, and therefore
a function of ,v,2 alone. This quotient is called the
partial derivative of w as te z, and is denoted by dw /x,
the script d being notice of partial differentation, while
the denominator shows the variable of differentiation.
In this notation, we have.

(a). dw= %1—: dz+ %g dy+- %tf dz
=f1 (x’ Y,2) dx+f2 (z,9, z)dy+fs (x7 Y, Z)dz-

35. The use of Principle 3 greatly simplifies the dif-
ferentiation of many complicated expressions. In the
first place it reduces differentiation to the consideration
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log{z-l—J(x’ia’)}’ —}dlogm-(—_igiz,),

_1_1 T—a
2a 8 z4a’
54. On the contrary the differentials (similar to the

above),
dx dz dx

J(@*—z2) zJ(@*—a?)" 224-a?
are anti-trigonometric forms, their integrals being,

. z 1 x 1 x
sin—1= —sec—l-, =tan—1-,
a a a’ a a

The anti-vers form, 70 dx

x .,
—————————=—d.vers— 1 —is also
2ax—1x?) a

In fact the two in-

the anti-sin form d. sin—1

tegrals differ by the constant = /2.
B6. Other logarithmic differentials are,
seczdz, csczdzx, tan zdz, cot z dx=cos zdx /sin .
By multiplying and dividing the first three by
secz4tanz, cscxz—cot z, sec 2,
respectively, the integrals are seen to be,

log (secz4-tanzx), log (csc x—cotx), logsec z, logsinz.

dx

56. The differential asmaTboosa e

reduces to
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‘the form ;%, according to the values of a, b,

¢, by the transformation z=tan}z, and therefore
dz=%sec}z2dz. To make the transformation, first
put sinz=2sin}zcost2, coszr=cos$z?—sin}z?,
b==>b (cos 3 22 4 sin 4 z*) and multlply hoth numerator
and denominator by sec § 2. -

07. The integralf(m_*_—z)n, where n is a positive

integer is reduced ultimately to finding f 2 +62, by

successive applications of the formula,

dz 1
.(a) ()~ 2(n—T1)c? { (z2+c2)n—l +

=5 [y

This formula may be verified by dlﬁ‘erentiation

58. It can now be shown how to find Td z,

fn
‘where fnz, f,z are entire functions of z, of degrees m, n,
respectively, with real coefficients. If m is not less
than n, we divide the numerator by the denominator
to a remainder of less degree than n. The entire part
of the quotient is integrated term by term under Inverse
Rule 1. We have therefore only to consider a proper
fraction of the above form, <.e., one in which m<n.
By the theory of equations, the denominator f,x factors
into real irreducible or prime factors, of the forms
z—a, of (z—b)?2-4c?, each occurring to certain
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powers. By the theory of resolution into partial frac-
tions, the given proper fraction fnz/f,z will reduce to
a sum of fractions each involving a power of one prime
factor only in its denominator, and a numerator one
degree less than the prime factor of the denominator, pro-
vided, all fractions of this form be included in the sum whose
denominators are divisors of fox. The integration of any
such partial fractions comes under preceding methods.
The factoring of the denominator, and the resolution of
the fraction into the sum of its partial fractions, are
algebraic problems.

59. Tue ExproNENTIAL DIFFERENTIAL, d.ca®=
cloga. a®dzx. This differential consists of a power with
constant base, multiplied, to a constant, by the differ-
ential of the exponent. It is anti-differentiated by
dividing it by the product of the differential of the exponent
and the natural logarithm of the base.

60. THE TRIGONOMETRIC DIFFERENTIALS, csinx dz,
ccosxdxr, csecx?dr, cecscx?dr, csecztanzdz,
cesczcotzdr. These consist of certain trigonometric
functions of a variable, multiplied, to a constant, by the
differential of the variable. The integration consists in
replacing these functions in each differential by the
corresponding function of the same variable from which
it is derived and dividing the result by the differential
of the variable, and also by —1 if the resulting function
isa ‘“‘co’’ function. Thus, the integrals are respectively,
—ccos®, csinz, ctanz, —ccotz, csecx, —ccsca.

61. InTeEGRATION By ParTs. Principle 3 can be
reversed in integration. Its particular application is to
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a differential udv, where u is a chosen variable factor
and dv a known differential. From d(uv)=udv4tvdu,

we find f udv=uv— §vdu. In words, to integrate by

parts, integrate as if a chosen variable factor were a constant
Jor the first term, and complete the integration by subtracting
the complete integral of the differential of the first term as if
the assumed constant alone varied. The success of this
method, when it is applicable, depends upon the choice
of the variable factor, which must be such that the
new integral to be found is easier of solution than the
given one.

E.g. z? e*dr=1x%*—2 | xe?dx
=z2e*—2zxe%4-2 | e*dx
=12 e*—2xe*+}2e%.

This is by taking e*dr=d.e® as the known differen-
tial each time, and the remaining factor as a constant
in the partial integration. But if we take e® as the
assumed constant, we find

x8
fx2 etdr= geZ—g, x8 ¢% dz,

and the new integral is more difficult than the old.

62. In the following examples that give a differen-
tial, followed by one or more of its integrals, it is
required : first to verify the differentiation by the prin-
ciples and rules of preceding articles, as an exercise in



42

A PRIMER OF CALCULUS

differentiation; secondly, to obtain the integral from the
differential by the inverse rules or methods of the
preceding forms, as an exercise in such methods and

rules.

The more important integrations may be taken

as fundamental forms in any subsequent examples of
integration.

9.

10.
11.
12.
13.

ExAMPLES.
DIFFERENTIALS. INTEGRALS.

1. (8x8—9x24-62—T7)dx; 2x¢—3234322—T24-8
2. (3Jz+§x— 9r2-}- x—zs-)dz; 2x§+12~/x—3x3—r2
3. (dz—1)dz; 222 —z 43, (4z—1)2 /8.
4. (4—3z)2dz; 3+4+162—12224-323, —(4—3x)3 /9
5.
6
7
8

J(4a+4-92) dz; 2(4a+9:c)% /27

. 8ds/ J(a24-s2); J(a24-s2).
. 27 l(a4-bam ) dx; (a4-dam)M sbn (h4-1)
. am(a4-ban )P {(m—4-1) a4 (mA-nh4-n4-1)bz™ | dz;

am+1 (a-ban) b
g1 (g -bzn ) dx ;
—o— D) (a4-bzm)hFl san (h4-1)

2 dz / (a3 4-oan); 2 /(a2 +czt)? 3a2
D/ (@t ort) T oL (a3 er®) T 0t (b
x(a”-}—cx?)g dzx; (a2+cx2)h_;_2/c (h4+2)
J(a?4-cx?)dx =&%+(£—) .z dz, for integration

by parts; tzJ(at+-c?) +a72f J kajfl-cz’)



14.

15.

16.

17.

18,

19.

20.

21.

22.

23.

24.
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J@—m)d;  jef(@—ot) 45 sin=1Z
J (@2 d; B (@242)+ G- log (o JaTFa)
272 *
(a? —ac?')‘iL dz = (a__;sz__)_ .28 dx, for integration
by parts;
2 (a2 —22%) J (a2 —a?) 4 %isin—l'g
(@20)ddx;

2 (50 +20%) Y (0t +20) + 22 log(at-Vaiam
8 8 a+a?)

xdx x
KT . — — —-1Z
JQar—a7y’ J(2ax—2x?)+4a vers -

dz . __ o (2ax—z?)
z.J (2az—22)’ ax
J(2az—22%) dz; x;a ./(2az—z’)+g22—vers“"—:
drx .
xBJ(aﬁ_z‘l)’
J(a2—2?) 1 z
T T 2a%2? +—2T“- loga+./(a’—x3)
dz . J(x2—a?) .
z8 J(z?—a?)’ 2a? z? + a3 °%° 15
z dx 1
PERRpTE - log J (a?+-ez?)

dx 1 1 A
x(a_'_bxn)) _a_,,"'log(arn-l_b)’a'_,nloga_i_bzn



25.

26.

27.

28.

29.

30.
31.
32.

33.

34.

35.
36.
37.
38.

A PRIMER OF CALCULUS

1—}—:::2 z
gz log 1—x2
z34-1 . (a—1)2 z
2e—1) % log — (x—l)“
-1 2243 -1 %
mdx, Z+%'10g"——~/3tan J3

dr 1 log z242,/241 n—1 1 T2
S U WD) x’—mJ2+1+2J2 T—z

28 4-1—1 da;
(GEY
ar =2
%log (x24-2)— 4JZ tan ./z @59
dz/zlog x; log? z=1loglogz
logzdz /x; log 22 / 2=logz. logz /2
2 dx /22, : log. 22
dz dx .
foga’ fl@ (a function not tabulated)
a—t-x
./ +

J(a+x) (6F72) + (a—b) log (Vatz+ Jo+z)
[Put b +2=y2, dr=2y dy]

Vi 5 d G GF D+ @+ sin—ty 2

(e*4e=)2dx; 3 (e —e 2 4-42))
i—:—__;—}dz; 210g(e"+1)—4¢

arbedx; a*b® /logab



39.

40.
41.
42,
43.

45.
46.
47.
48.

49.
50.
51.
52.

53.

54.
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ey § et e log (¢ —1)
22 e® dz; e® (x2—2242)  (int. by parts)
z2 logzdz; 23 (8logz—1)
sin—lzdz; zsin—lz 4,/ (1—22)
sin 2 r.dx; —3cos2zx
. cosz? drx; $r+4}sin 2z
cos z8 dx; sinz—3% sin z3
(tan z4-cot z)2 dz; tanz—cotz
(tan 2z—1)2 dz; 4 tan 2z4-log cos 2z

emzginnzdr,; ™% (msinnr—n cosnr) / (m24n?)
[Integrate twice by parts with ™2 as constant]

€™ cos nx dx; em* (nsin nz-4m cosnz) S (m2-4-n3)

tan z2 dz; tan x—zx
tan 28 dx —sec z? tan z dz—tan z dz ;
3 tan z2 4-log cos x
n—1
ftan zhdr= tz:‘n_:cl —ftan 22 dx

tana?dz, n a positive integer'

tan z2n—1 tan:c
omn—I1 - —3 + +(—1)"+1(tana:—x)

tan 22»—1 dx, n a positive integer;

tan z2»—2  tano2r—4 tan x2

m—2  2n—4 -+ +(—1)”(——+logcosa,)

55.

seczt dr=secz? (1+4tanx?)dz; tanzr<43}tan a8
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56. cosz4 dz=% (14-cos 27)? dx ;
5 (122 4 8 sin 22+ sin 4%)
57. cosz4 sin 22 dx=3% (1 4 cos 2z) (sin 2z)2 dz
=5 (1—cos 4x) dz % sin 222 cos 2z dz;
z sindzr 1
16— 64 —}—74—8- sin 2x38
58. cosz* sin v® dz = cos z*+ (1—-cosz?)sinz dz ;
—3} o826 |4 cos 27

do 3 tan—1(3tanz)

5—4cos2z’

60. If sinhx=% (e*#—e=)

cosh z=14 (¢* 4-¢—%)

then cosh 22 —sinh 22 =1
dsinh z=cosh z dx
d cosh z=sinh = dx
dsinh—1lz=dz/ / (24 a?)
dcosh—lz=dz/ ./ (z?*—a?)

59.

63. Reduction Formulas

Let v=,/(a?+4-cz?); then we have the differential
rules,
d.v"=cnv"2dx

(3) e ()7

v v8’
These rules may be used to integrate 2™ v* dz by parts
in six different ways, so that the new integral shall be
f:c"" v* dz where m/, ' are one or both two units

smaller than m, n; and repeated applications of such
integrations will theretore reduce the given integral
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eventually to dependence upon standard forms, either
algebraic, logarithmic or anti-trigonometric, when m,
n are any integers positive or negative. These formulas

are,
fx"‘ Mdr=

(@) §vr.zmde

{zm+lvn__cnfxm+24vn—z dx}

p— 1 m=—1pn m—2 yn+2 }
—m{x Ipn+2 —(m—1) | = vt dy

©) f—z: Lam+ndy
1
_— 1 2 mgn—2
— ] {x"‘+ v 4-a nf:c v d:v}
(d) (amtnts z___v"s dzx

= a’-(_rll-i?ﬁ { — M+l yn+2 L (m4-n<4-3) | 2™ o™+ dx }

m—1
(e) ﬁm—l' zy™n—l dy

=¢T"n_*__1n_m{xm—l'v”2_a2(m__l) Zm_ﬂ'v"dx }
(f) |omnss, i’:‘ﬁ
1

= I { m+l 'v'“l-’——c(m+'n+3)j~:c"M v" dx}



48

A PRIMER OF CALCULUS

_ In these formulas, a2 may be changed to —a?
throughout, and ¢ is usually 1 or —1.

Similarly, let u=sinz, v=cosz, so that

d.ur=nu"lydr,

d.v"=—nv"1ludz
u) " w—1dx v " o1 dg
d. [;] =nNn. '———_le y d [a] =N ——~un+1
and then

fu”' o dr=

(@) J‘v"-l. umy dz

o) fu”‘—l. vy dz
. =%% { —um=1gntl L (m —1) | um—3yn+2dy }
, —1
()
= m-li—n { umtlygn—lt (n—1) | umon—2 dg }

(d') ymtnt2, %

n+1 { — L yntl +(m__|_,n+2) um nt2 dy }
©) V5= omi—ly gy
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=m%; { —um oyl (m—1) f um2 " dx }
umdx
(f') pmnt2, e
= m-li- T { umtlyntl L (m 4-n 4-2) | umt2on dx }

61. sinz® dx=tan z5. cos z5 sinz dx; -
—3tan z5 cos 284 {Lf tan z3 cos z3 sin x dz,
—3tanz5 cosz® —-f tanx3 cosz* +§ftanx coszsinz dr,

. . . 5z
—%8in 25 cos £ —+f;8in 78 co8 T —y sin x cos v - 16"

62. cos z4sin 22 dx;

cos z si_n:_c . . z
18 (84-2cosz3 —8 cos z¢) T
dz 1 1 5 .
3. sinz* coszd’  cosx? (3 Sin 28 + 3sing — §sinz)
4§ log (sec z4-tan z)
64. Indeterminate Forms

RuLe. 7o evaluate % for a given value of = that makes

fr=o0, Fx=o, differentiate both numerator and denomina-
tor, before substituting the given value of x; and similarly
for values of x that make fr—o0 , Fx=00. Before making
such differentiations, any factor of f(x)/Fx that is not
zero or infinity for the given value of  may be replaced by
8 value for such value of z.
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For let fa=o0, Fa=o, then :
fa JY—fa —1lim Afa  dfa

Fa—im F_"‘ Iim =M X p = 3 Fa’

If fa=w, Fa=ow, then1/fa=o0, 1/ Fa—o, and

_fa .. 1 1 .. dFr  dfx
—b2 dFayd fa; ie, b=d fa,/d Fa.

Finally, any factor whose limit is finite, can, by the
principle that the limit of a product equals the product
of the limits of its factors, be at once replaced by its
limit, and the limit of the remaining factor may be
found by itself.

Exponential indeterminate forms must be evaluated
through their logarithms. E.g. y=(1 -|—£)’c when
z=o whose form is 1¥, must be evaluated from
logy==xlog (1 +31c )=1log (14-z) / z where 2 =3—16 =¢0.
This is 0 /0, and is therefore when z=o, dlog (142) /dz

1
=1_+_z=1’ logy=1, y=-e.
64. Evaluate the following functions for the given
values of x :

VT ' .
@ 22, 2=1 2
28 —z2—z4-1

r=1

® S ®
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z—5

(e) T—Hi—1’ z=5 @
(@) logz/(z—1), z=1 : ¢))
(e) (¢ 4e=2) /z, =0 [©))
() gog iz #=0 —2)
(g) logsinzcosz, x=mn/2 (V)
(h) sin—lz/sinz, x=0 (¢))]
(i) tanz /logcosz, == /2 (o)
(j) € (cosz—1) /zlog (142), z=0 )

[Note that the factor e* can be replaced by e?=1
before differentiating numerator and denominator].

(k) secz—tanz, t==/2 _ 0)
(1) @427, z=o W
(m) (1+x)*-"l—’, T=0 (0,0
(n) (1 -|-mz)L=, T=0 ()
(0) (logz)*, z=o0 @
(p) 2079, z=co ©
@ (z+1)t;110é(_2_ﬁ”)_—21)-’, z=1 (64)

65. Applications of Inverse Principle 1

65. If zdrx+ydy—o0 and y=a when 2z=o,
then 22 +4-y2=a?
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66. xd:v+ 'z/dy

=0 and y=b when z=o,
then —+~’/_—1

67. If —+ _o, and y=a when z=o0,
then x!+yl =al

68. If‘;ﬁ 23/, and y=o0 when z=0, then y?=4ax

]
69. If %d}=c, and r=a when 0=o0, then r=a ¢¢

70. If (14-x)3=1+43x4-322+4x3, then by integration,
(A42)t=1+44r+4 6224 42342
71. From IL =14z Fztfaef.., (22<1)

show that log 1+ =2 (z4+-32243254...),

72. From ———

~/(1 ﬁ)
. 1.3.5...(2n—1)
_1+{;x2+mx4+...+ 2.4.6...2n i o

when x2<{1, show that for the same values of z,
sin—lx——

1.3 x5 1.3.5... (2n—1) z2»¥1
o+1g +24 5ttt 51620 o
—_1— a_ 2

73. Froml-{-x‘l—l r2-rt—a84-... (x2<1)

show that, tan—loz=2—} 34} 25—
and that, tan—1 1iﬂ-—:— -|—:v—§x3+}x5
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74. Show that the function e* defined by the differen-
tial equation d.e*=¢e*. dz, and the initial value ¢* =1,
satisfies the exponent law e*.e¥=¢€**¥, and that this

2 8
function is e =142+ % + %-l +... (a convergent

series for all values of z).

[Prove the ratio of the two members constant, by
differentiating such ratio, and determine the constant
by its value for z=0].

Notk. el=1414 % + 5% +..=2.71828...=¢; alse
by the exponential law, e2=¢l.el=e.e, ‘e3=ez.el=e.e.e.,
et==¢3¢l=¢.c.c.¢, etc. Thus the exponent notation e*

2
for 1424 %T"' agrees with the usual meaning ot

this notation when 2z is a positive integer, and it must
agree also when z is any real number, since the gener-
alization of the exponent in elementary algebra, is
derived from the exponential law, a™. a®=am™+". The
above generalization extends also to imaginary ex-
ponents.

75. If t¢=,/—1, show that e*=cosz4isinz
¢—*=cog z—1sin z, and thence

. z? x4 x8
cosz=}% (¥ e ) =1—Gr + 77 — g+

1 . z8 x5
in oz — i — z
sinz= o= (eit—e ity =2 37 —{—5!

[Prove e—i* (cos x +isin z)=constant=1].



54 A PRIMER OF CALCULUS

Note. The above results give general definitions of
cosz and sin z for all values of z, imaginary as well as
real. The exponential values of cosz, sinz show that
in all cases cos 22 4sinz2=1,

sin (z4y)==sin z cosy--cosz siny,
cos (z+4y)==cosz cosy—sinz siny, ete.

Also, dcosx=——sinz dz, d.sinz=coszdz coso=1,

sin o=o.

76. If z,y be functions of 6, such that dy=zdé,
dr=—yd06, and z=1, y=o0 when 6=0, show that
z=cos0, y=siné.

[ Prove z cos 6 4 y sin 6 = constant =1, and

z 8in & — y cos § = constant =0, and solve for z, y].

66. Expansions in Series

77. If tanz can be expanded in ascending powers of
3 5
z, show that tanx=x+% -+ 21L5+

[Put tanz= A4 4 Bx 4 Cx? 4~ Dz3 4 Ex* 4 Fx5 4-...
and determine the co-efficients by successive derivation
and z=o].

(8. If the following functions can be expanded in
ascending powers of the variable given, then the ex-
pansions are:

(a) log A4-2)=z2—3% 22+ 28—} 244-...

(b) (142 |

— 1 prt p(zl—l) - +p(p—1§!(p—2)x, e
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3
© e’secx=1+x+x2—-2%-+

d) 1 _ (12 x4t x8 —logsin( T 0
(d) logcosz=— .7—|——1§+4-3-|—..)_ogsm(§—x

Note that logz, logsinz, cotz, logcotz, etc., are
functions that cannot be expanded in ascending powers
of z such as A4 Br4-Cx2 4-...

(e) Maclaurin’s Theorem. fr=

fot-foz4f"0. 545" 0.5 ... o, (—rf-_%,-;-

where 'z, f"z, f"z, ... f0—Dz, .. are the successive
derivatives of fx.

Nore. This expansion certainly fails when fz, f'z,
f'z, f'"z, ..., are not all finite continuous functions
for every value of z between o and its final value used
in the expansion. When these derivations are all
finite and continuous from o to z, it can be shown
(Article 68) that the difference between fr and the first

S " .
n terms of the series is exactly f(Wz'. o where 2 is

some number between o and z. Although 2’ cannot be
determined otherwise than that it is between o and z,
yet this form of the difference enables us to assign a
superior value of it by using the largest value of fa’
as « changes from o to z, and if this superior value
approaches zero as n approaches infinity, then certainly
(e) must be true.

(f). Taylor’s Theorem.
2
faty =fetfry -+ 5+



56 A PRIMER OF CALCULUS

n
[The remainder after n terms is f(®)z’. % . (¥ between

zand z+y)].
(g) fr=fa+f'a{zx—a)+f"a. (2’2_—;1)2 +..

[Remainder after n terms = f™z’, _(x%'a):, ' between
aand z].

Nore. ¥rom (g) show that if a is a root of fr=o0
then z—a is a factor of fr and conversely. Defining:
a 18 an n-multiple root of fr=0 when (x—a)* s a factor
of fx, show that the double roots are common roots of
fr=o, f't=o0, and that z—a (if a is a double root) is
a common factor of fz, f'z. So, triple roots of fr=o are
roots of the greatest common factor of fz, f'z, "z, and
80 on.

67. Maximum and Minimum Values

fx being a finite continuous function of a real variable
x, it is said to be increasing for a given value of « when
its value increases as z ¢ncreases from its given value and
decreases if x decreases; and it is said to be decreasing
when its value decreases as x increases from its given
value, and ¢ncreases if x decreases. Also fx is a maximum
value when for immediately less values of z, fx is in-
creasing, and for immediately greater values of z, fx is
decreasing; while fx is a minimum value if it is similarly
changing from decreasing to increasing at the given
value of 2. The greatest value of fx is necessarily a
maximum value, and its least value a minimum value,
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but there may be other maximum and minimum
values.

In other words, maximum and minimum values of
fz are only greatest and least values of fx for values of z
in the immediate neighborhood of the given value, both
greater and less. Since %—= im i—f:, therefore %‘iﬁ
AFx

for small values of Az,
Az

must have the same sign as

supposing that _(_Zi_x 18 meither zero mor discontinuous.

Hence:

(a) Sz is increasing when f'z is positive.

(b) fx is decreasing when f'z is negative.

(¢) fris a maximum when f’z is changing from posi-
tive to negative, ¢.e., when f'z is positive for values of z
immediately less than its given value, and negative for
values of z immediately greater than its given value.

(d) fr is a minimum when f’z is changing from nega-
tive to positive.

(¢) A maximum or minimum value of fz can only
occur for a value of z that makes f'z zero or discon-
tinuous.

For, if f'z is not zero or discontinuous, it will be posi-
tive or negative, which is case (a) or (b). The most
common discontinuity is f'z=o0.

Find the maximum and minimum values of the fol-
lowing functions:

78. y=5-4-8z—z2.
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[%:2 (4—2), which changes from +- to — at z=4,

1.e., it is positive when <4 and negative when z>4.
Therefore y=5+432—16=21 is the maximum value
of y. Also y can be as much less than zero as we please
by taking z large enough.]

79. y—4d+(@a—3)—(@—3)H.
[%=‘§1(Z‘_‘—§’;; which is zero for z=17 /5, and

dy

discontinuous for r=3. At 2=17/5, e

changes from

4 to — and y is a minimum; at =3, d—: changes from

— to 4 and y is a maximum. Also y can be as great
as we please by taking z enough less than zero, and y
can be as much less than zero as we please by taking z
great enough, so that both the maximum and the
minimum values of y, are only with reference to ad-
jacent values.]

80. y=a sin z4-b cosz.
[% =bsinz—acosz; tanr=a /b, y==,/(a2-4-b2).

?l% % =—(acosz+4bsinz) =-—vy. Therefore, when
. 0. dy . . .. dy . ‘
vy is positive, 75 18 decreasing, by (b) with 7 10 place

of ¥, and remembering that % is zero for the given

value of z, therefore it changes from 4 to — or
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y= ~/a*—|--b2 is a maximum value. When y is nega-

tive % is ncreasing, and being zero, it is therefore

changing from — to 4, and y=—,(a%?4b?) ,is a
minimum value. These are true greatest and least
values of y, since ¥ cannot increase or decrease in-
definitely.]

8l. y=(z+41)2 (z—3)L.

[min., z=—1; max., £=2; min., z=3].
- 82, w==1x2+4y?, where lz4+my+4n=o.

[w=n? / (12 4-m?), a minimum].

83. Find the largest rectanglar area that can be en-

closed by a boundary of 200 feet. [2500 sq. feet.]
84." Find the largest rectangle that can be cut out of
a circular sheet 6 feet in diameter. [18 sq. feet.]

85. Find the altitude of the maximum rectangle that
can be cut from an isoscles triangle, one side being part
of the base. [% altitude triangle.]

86. Find the altitude of the maximum right cone .
that can be inscribed in a sphere of radius a.

[Let a4z=altitude, y= radius of base =,/ (a?—=?);
z=1}%a for required maximum.]

87. Find the basin of largest volume, round or

square, that can be made with a given number of square
feet of tin. [Width = double the height].

88. A Norman window consists of a rectangle sur-
mounted by a semicircle. Given the perimeter of the
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frame, what dimensions give the window that will
admit most light. [Height = width].

89. How far must one stand from the base of a
column to obtain the largest angle of vision of a
statue on the top.

[The distance is a mean proportional between the
entire height of column and statue, and the height of
the column].

68. Remainder in Maclaurin’s Theorem.

Lemma. If Fz, and its derivative F'z, be real and con-
tinuous functions of the real variable z from z=a to z2=¥9,
and if Fa=Fb, then will F'z be zero for same value of z
between a and b.

For, when z changes continuously from a to b, Fz
must in the beginning either increase from the value
Fa, or decrease from that value, and since it returns to
the same value (Fb=~Fa) in the end (and does so by
continuous change of value), therefore there must be
an intermediate value of z at which Fz changes from
increasing to decreasing or from decreasing to increas-
ing. Let z=2' be such intermediate value of z; then
by Art. 67, Fx’' is a maximum or a minimum value of
Fz, and therefore F'z’ is either zero or discontinuous,
and since the possibility of discontinuity is excluded
by supposition, therefore F'2’ =o.

Pheorem. The remainder in Maclaurin's theorem after
n
n terms 18 fr', :%, where ¥’ is some value between o and z.
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n
For, let such remainder be R:—!, so that R is that

function of z which is given by the equation
(@) fr=
Jortf0.541"0. S HS0=V0. L + R

The conditions to which fz and its derivitives f'z, f"z,
«..f™z, must comply are that they are all real and
continuous functions of the real variable z, from z=0
to z==2z; and we can then therefore make up from these
functions, the following function Fz which, with its
derivative F’z, are also real and continuous from
z=o0to z=1:

Fe=fr4(z— z)f’z-{—(:lc f” 24 ..
+ ((n—l)l fevz4 (x ) ~—R
F'z=f’z—f'z+ (z—zlf”z_ (:L'—Z)f"z—{— (x_z) f’”z—

+ ( 1)1 (f(")z—R)

((x—z) = (fmeR),

since preceding terms all cancel.

But Fz=fr when z=o0, in consequence of the value
of R given in (a); and Fz=fr when z=1z, in conse-
quence of the vanishing of every power of z—z. Hence,
by the lemma, F'z=o0 for some value of 2, between o
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and z, say z=2'. Substituting this value of z in Fz
and dividing out factors not zero, we find R_f(")x’
90. Showthat the error of log (1+a:)—:t— = + T %

is between z7+1 /(n41) and xm+1/(n+4 1) (1 4-2)n+
so that when z is positive and not greater than 1,

2
log (1+x)=x—%+... How many terms of

log2=1—3%+4-3%—%}+... must be taken to compute
log 2 to an error between .0001 and .00005?

91. Show that the errors of

. gn—1

sin r=2— !+ . F e @n—yp
’ rn—2

cosz=1— !+ F a1’

are =+sindz.z?/(2n)!, ==cosfz.z?—1,/(2n—1)!
where 6 is some number between 0 and 1. Show that

r2)n xr? 1 n—1
these errors are smaller than - /nlz 71‘ /nl,

respectively; and that therefore, however large = ma)'r
be, n can be taken large enough so that the above
approximatons to sinz, cosx are as accurate as we
please. How many terms of these series must be taken
to compute cos 1, sinl to errors certainly smaller than
.0000001 ?

92. If fr=2"+-a, 2" 1 4-... a2+ an, where n is
a positive integer, and a,, a,, ... ay, are real numbers,
show that between two real roots of fxr=o0, lies at least
one real root of f'z=o.
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CHAPTER III
Concrete Representation

69. -Algebraic quantities are represented by concrete
quantities such as length, area, volume, etc. Negative
numbers are represented only by the assignment of
opposite characters of measurement, and then a negative
measurement of one character means the corresponding
positive measurement of the opposite character. E.g.,
— 2 units to the right = 2 units to the left, — 3 units
up = 3 units down, — 4 radians counter clockwise = 4
radians clockwise, etc. Imaginary numbers can be
represented by directed lengths in a plane in accordance
with the principle that ,/—1 denotes change of direction
through a counter-clockwise right angle, as ,/—1 units
to the right =1 unit up. This is applicable when the
concrete quantities are such as forces acting at a point,
but not for ordinary lengths, or areas or volumes.

70. The differential of a variable quantity must be
a quantity of the same kind. In fact, the change of
value, the proportional to this change of value, and
consequently its limit the differential, must be the same
kind of quantities as the given variable. In other words,
the differential of a length is a length, of an area, an
area, of a force, a force, etc. Concrete representation
of variable numbers will therefore give corresponding
representations of their differentials, and the determina-
tion of the differentials from the variables is important
not only for its applications to concrete problems, but
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also because it gives concrete ideas of differentiation
that illustrate this algebraic process and its principles.

71. Let 0OX, OY (Fig. 1) be horizontal and vertical
axes of reference in the plane of the paper. A variable
point P in this plane is determined by two variables
z, y called its co-ordinates, which are respectively the
measures of the distances of P to the right, and up, from
the axes. Negative measures in these directions mean
positive measures in the opposite directions. The first
co-ordinate is called the abscissa of P, and is OL=2z
units to the right (or briefly OL=rx); the second co-
ordinate is called the ordinate of P, and is LP=1y units
up (or briefly LP=y). Ify be a definite real function
of z, this means that each value of z gives one and only
one value of y, or that P is represented on each vertical
line by one and only one point; if y=fr be a continu-
ous function of z, then the locus of the point Pis a
continuous curve, crossing each vertical line not more
then once. As an example of discontinuity find the
locus of P from z=1 to =3 when y=2 + integer
part of z. Conversely, any continuous curve drawn
from left to right, and crossing each vertical line once
only, would, if we understand that P always lies on
this curve, make y a definite function of z. In Figure1
the curve drawn is actually a circle of center C, and
vertical radius AC. The upper half of this circle cor-
responds to a different function of z from the lower
half. With a certain unit of length, we have OB=S8,
BC=9, AC=5. For P=(z,y), any point on this
circle, we find from the right triangle on CP as

e ———————— . et e —oreee " "
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hypothenuse, with sides parallel to the axes, that
Y—9)2+(x—8)2 =25, i.e, y=9=4/25—(2—8)?
are the two functions in question.

72. The curve y=fz is smooth when it has a definite
tangent PT at each point P, and when the direction of
this tangent changes continuously for continuous varia-
tion of P. The tangent at P is defined as the limiting
position of the indefinitely produced chord PP’ as P’ ap-
proaches coincidence with P. This condition of smooth-
ness is in fact the condition that fr is differentiable and
that such differential, f'z dx, is a continuous function.
Continuity and smoothness are implied conditions on
all curves. There may be exceptional or singular points,
in this respect, but the continuous changes of value of
the independent variable that are considered in general
statements must not include such singular points.

73. 1In a given curve there are other functions of the
abscissa z, of P, besides the ordinate y. Thus, let 4 be
an assigned ¢nitial position of P on the curve, and let
the tangent line PT and the normal line CP (perpen-
dicular to the tangent) meet OX in M, N, and also
meet a perpendicular to OP through O in M, N,
Then :

the arc of the curve is the arc AP==3,

the ordinate area is the area ABLP==u (described by

the ordinate);

the slope angle, is the angle XMP=¢ radians;

the slope is tan ¢ ;

the tangent and normal (lengths) are, MP and PN;

the subtangent and subnormal are, ML and LN;
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the polar radius and angle are OP=r and < XOP=¢
radians; . )

the polar radius area is the area OAP=v;

the polar slope angle and slope, are << OPM = radians,
and tan ¢

the polar tangent and normal, are M'P and PN’

the polar subtangent and subnormal, are M’'O and ON’.

74. The co-ordinates r, 8 are polar co-ordinates of P;
the unit of measure for the angle 6 is a counter-clockwise
radian; the unit of measure for r is the unit to the right
turned through the angle 6, so that it is in the direction
0; ris therefore positive or negative according as the
direction 6 is towards or from P. We generally suppose
0 taken so that r is positive. The unit of measure on
T
§-

M'N’ is in the direction 6— The units on tangent

and normal are in the direction ¢ and 4>+72—r; the

direction ¢ can be taken as the direction of increase of s.
The area described by the ordinate y is divided into
positive and negative parts determined by the product
of the sign of the value of y and its positive or negative
direction of motion along OX. The area described by
the radius vector r is also divided into positive and
negative parts according to its positive (counter-clock-
wise) or negative direction of turning about O, whether
r is positive or negative. Conventions of sign are for
definiteness of general statements, <.e., with such con-
ventions, general theorems can be made holding for any
position of P on its given locus, that must otherwise be

-
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separated into several distinct theorems depending upon
the position of P. In other words, results that are
obtained from a construction in which all the quantities
are positive will hold for any possible construction
when proper conventions of sign are used to interpret
the quantities, which would not thus generally hold when
magnitude only is concerned. This is because con-
ventions of sign make continuously varying quantities
change from positive to negative when their magnitudes
are to change from additive to subtractive, as the posi-
tion of P changes continuously.

75. To construct the differentials of abscissa z, or-
dinate y, and arc s, of a given curve, for assigned values
of x, dz.

Let P be the point on the curve whose abscissa 8 x; take
PR=dzx wunits to the right; draw the tangent at P, and
draw RS parallel to OY to meet this tangent in S; then 8
RS=dy units up, and PS=ds units in the direction of
increase of 8.

For, let P’ be the point on the given curve whose
abscissa is the new value «'; let the new ordinate
y'=L'P meet the line PR=dz at Q; lay off on PR the
length PR'=N.PQ; draw R'S’' parallel to OY to meet
the chord PP’ in §. Then by similar triangles,
R'S’=N. QP’, and since PQ=Azr, QP'=Ay, there-
fore, PR'=N.Az, R'S'=N.Ay. The differential pro-
cess -

lim NAz=dz, or lim PR'=PR,

consists in making @, and therefore P’, approach coin-
cidence with P, while making N correspondingly
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increase so that the point R’ approaches coincidence
with R. Two constructions are shown in the figure,
the first is lettered as described and N=3, the second
is unlettered, @ is nearer to P than in the first con-
struction, R’ nearer to R, and N=7. We are to
imagine a series of such constructions, unlimited in
number, in which @ is taken nearer and nearer to P,
with the object of determining the limit of 8" knowing
that the limit of R’ is R. It is easily seen that S’
approaches S, for, in the first place, R'S’ is by con-
struction always parallel to OY, and therefore its limit-
ing position is a line RS parallel to OY, and secondly,
since P’ approaches P, and S’ lies by construction on
the chord PP’ (produced), therefore S’ must approach
coincidence with a point on the tangent at P, which is
by definition the limiting position of the chord PP’
produced. Hence dy=1im NAy=1im R'S’=RS, where
RS is a line parallel to OY, and meeting the tangent PT
in 8.

Next produce the chords from P to each point of the
arc PP'=As, in the ratio N:1, and let arc PS’ be the
curve in which such extended chords terminate. The
arc PS’ is then similar to arc PP’ by construction, and
its length is N.arc PP’=N. As; both arcs have also the
same tangent PT, since the tangent is determined by
the limiting position of the samc chords produced, in
either case. Thus when P’ is so near to P that the arc
PP’ is always between its chord and tangent and of one
direction of bending throughout, the similar arc PS’
must lie between its chord PS’ and tangent PS, and be
of one direction of bending throughout. Hence as P’
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approaches P, the arc PS’ must approach point 1o
point coincidence throughout with. the straight line
PS8, since PS’ does s0; t.e.,

ds=1lim NAs=1im arc PS’' = PS.
Observe that the two triangular figures PQP’, PR'S’,
each with an arc side, are similar figures, with P as

center of symmetry, and N as ratio of similitude. Since
PR'S’ approaches coincidence with the triangle PRS, it
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appears that the difference figure PQP’ approaches
similarity with the differential triangle PRS, as its sides
indefinitely diminish. The difference figure reduces to
the point P; we have left, however, in the triangle PRS
what might be called its ultimate form.

(a) The limiting ratio of any arc to its chord as the arc
18 taken smaller and smaller, is unity.
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For, PP’: arc PP'=PS’: arc PS’, whose limit is PS:PS=1

(b) The slope of the curve y=fx at the point (z,y) 8
dy / dr=f'x.

For, the slope is tan ¢=—RS/ PR=dy / dz.

(¢) Inverse Principle 1. If dw=o didentically, then
w==constant.

[Or, if du=dv identically, then d(u—v)=o0 identi-
cally, and v —v==constant.]

For the slope of y=fx being dy/dz, then if dy=o
for a particular value of z, at such point (z, ¥) S coin-
cides with R, or the tangent is parallel to 0X; if dy=o
for every value of z, then the tangent is parallel to OX
at every point, and the curve y=fr must be a straight
line parallel to OX, so that y=fx remains constant as
z changes. This proves the principle for real functions
of one real variable. More generally, if w be a real
function of real independent variables z, y, then

dw,= %g dx—i—%fg dy, can be identically zero only when
%_u;=0, %%=o, identically, since dr, dy, are arbitrary

values. Thus w=f(z,y) is constant when either z or y
changes alone, whatever value the other variable may
have, and it must then be constant when both vary,
since  Af(z,y) =A.f(5,9) +A4,f (@, y)=0+o0=o.
Similarly for real functions of any number of real
variables, and this includes imaginary variables,
regarded as depending upon their real components. If
w is imaginary, it is w=w, 4w, J—1, where w,, w,
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are real, and dw=dw,4dw,.,/—1=0 only when
dw, =o0, dw,=o0, so that w,, w,, and therefore w, will
be constant, if dw=—o, identically.

76. To construct the differentials of the polar radius .

and angle, r, 6:

Draw from P=(r, 6), the length PS=ds on the tangent
at P, (Art. 75); draw SR, perpendicular to the polar radius
OP at R, ; with center O draw the arc PS, equal to R, S in
length; then 18

PR,=dr, R ,S=rd6, <POS,=dé.

For take on the given curve, the point P'=(7, ¢),
and with O as center draw the arc P'Q to meet OP in
@'; produce PP’ into PS'=N.PP, and the chords
from P to the arc PP’ in the same ratio, so as to deter-
mine the arc PS8’ similar to the arc PP’y draw SO’
parallel to PO to meet PO in O, and with O as
center draw the arcS’R” to meet OP in R”; then
by construction, and similar figures, << POP' =A¥,
arc QP'=r' A0, PQ=—Ar, arc PP’=As, and arc
R"S =NarcQ PP=+ NA9, PR'"=NPQ =NAr,
ar¢ PS’=NAs. When P’ approaches P, the arc and
chord PS’ approach the common limit PS=ds on the
tangent at P (Art. 75); also S’'0’, which is parallel to
PO, approaches a parallel to PO through S, and con-
gequently the arc R”S’, which meets its radii perpendicu-
larly, approaches coincidence with the line R, S that is
pependicular to OPat B,. Hence:

R, S=limarcR"S'=lim 7’ NA0=rd 6
PR, =lim PR"=lim NAr=dr
< P08, =arcPS, /OP=R,S/0P=d0
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Observe that PE,S is the ultimate form of the dif-
ference figure PQ'P’, since it is the limit of the similar
figure PR"S’.

7. The differential of the ordinate area w=—ABLP
(Fig. 1), s the area (ydx) of the rectangle on LP and PR.

For Au=area PLL'P'=y Az, where vy, is some
ordinate between LP and L'P’, so that when P ap-
proaches P, we shall have lim y, =y, and hence

(a) du=lim NAu=limy, NAz=ydx.

78. The differential of the polar radius area, v=—=0AP,
(Fig. 2) s the area of the triangle OPS or of the sector
OPS,. :

For Av=area O PP'=triangle OPP’ plus segment PP’
or Av=sector OQ'P’ minus figure PQ'P’. Also since
similar areas of Fig. 2 are.as N2:1, therefore

N. segment PP'=segment PS’ / N,—o0 when N=ww,
N. figure PQ' P’ = figure PR"S' / N,=0 when N=cw.

Hence dv=Ilim N. triangle OPP’'=lim triangle OPS' =
triangle OPS, or dv=Ilim N sector 0Q P'=sector OPS,
since lim 0Q'=OP, lim Narc Q P'’=arc PS,.

(a) dv=}r?do=} (zdy—ydr)
For drawing the ordinates LP and KS,

dv=area OPS=%4OP.R, S=}r2do
=} {OK.KS—(LP4 KS)LK—OL. LP}
=3} {(@+dz) @y +dy) — 2y +dy) dz—zy}
=3 (zdy—yda).
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Also, from Fig. 2,

(b) r2=z?+4y?, 6=tan—1(y/2),
which give by differentiation,

(©) rdr=zdz+ydy, r*dd=xdy—ydzx.
From the right triangles PRS, PR S, we find
(d) ds?=dz?4-dy?=dr?4-r2doz2,

Also verify the second equation of (d) -By squaring
and adding equations (c).

79. Observe that as shown in Art. 20, the preceding
differentials all vary proportionally with dz, for an
agsigned value of x, and each can therefore be expressed
in the form fx.dx. For example, let the given curve
be y==2; then, dy=2zrdz; ds=./ (dr*4dy?)=
J (144 22) dz; du=y de=x2dzx; dv=}% (xdy—ydx)=3%x2dz,
etc. Inverse Prin. 1 will then determine 8, u, v by



74 A PRIMER OF CALCULUS

anti-differentiation as soon as the initial point 4 is
agsigned; if this be =0, then

s=3%z./(14422) +}log 22+ V1F42?),
u=z3 /3=xy/3; v=3%u.

80. Derinition. The state of change of a variable
quantity at given values of its variables, is that state in
which it would change by the value of its differential
when its variables are changed by the values of their
differentials.

E.g., 22, at a given value of 2, is in a state of change
in which it would change by 2zdz where z is changed
by dz; at x=3, 22=9, and would become, as it is then
changing, 15 when z=4, 21 when =35, and so on; at
z=5, 22=25, and would become 35 when z=6, 45
when =7, and so on. Again, a particle which falls
16 t2 feet in ¢ seconds, would, as it is falling at time ¢,
fall 32tdt feet in dt seconds, or 32¢ feet per second.
So, when we say ‘‘that train is running 20 miles an
hour” we mean to express its state of motion at the
time of observation, not how far it will run in an hour.

81. The fundamental properties of the state of
change of a variable quantity are:

(a) It i a uniform state; i.e., the changes of the
quantity vary proportionally with the changes of the
variables (Art. 20), or more generally the sum of cor-
responding changes of the quantity and its variables,
are also corresponding changeq of the same, (proven by

d'w— d +%wd ).
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(b) The change of value of a quantity in s state of
change, and its actual change of value, may be made as
nearly equal as we pleasc by taking the changes of the
variables small enough—approximate equality between
very small quantities being taken in the sense that pro-
portionals to them of sensible magnitude are approxi-
mately equal, otherwise any two very small quantities
would be approximately equal, and the stated property
would be no property. For, let w be the quantity, and
%, y, its variables; then by definition of differentiation,
any changes Az, Ay can be taken so small that for a large
multiplier N, and the assigned values dr=NAz,
dy=NAy, to which corresponds dw=~F, say, we shall
have NAw and k as nearly equal as we please. Hence
assigning anew, dr=Az, dy=Ay, to which corresponds
dw=k, /N (Art. 20), we shall have dw and Aw as
nearly equal as we please in the sense that their pro-
portionals ¥ and NAw of sinsible magnitude are so.

We may say that the differential dw, of a function of
z, y, corresponding to sufficiently small values, dz=Axz,
dy=Ay, is the principal part of Aw.

E.g., taking dr=Arz=PQ (Fig. 1) sufficiently
small, then dy=QT, ds=PT, du=rectangle LQ,
dv= triangle OPT, are the principal parts of Ay=QPF’,
As=arc PP, Au—area PLL'P', Ay=areaOPP'.

82. When a point P is moving upon a fixed curve
(Fig. 1), the quantities z, y, s, , 6, u, v, etc., correspond-
ing to the given position of P have states of change
characterized by the corresponding changes dz, dy, ds,
dr, d6, du, dv,etc. These vary proportionally together so
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that the ratio of any two is the change of the first quantity
per unit of change of the second. Thus y would change by
dy, and 8 by ds, when z changes by dz, and dy/dz,
ds/dx are the rates of change of v, 8, as to . If Phas
its given position at a corresponding time ¢, then z, y, s,
etc, are functions of ¢, and dz, dy, ds, etc., are differ-
entials corresponding to any assigned length of time dt.
Considering the motion of P with respect to change of
distance, it would move in time dt a distance ds on
the tangent at P, so that ds ~dt is the speed of P at time
t, and it is tangential in direction. Using a dot over
a quantity to denote its derivation as to the time, then
s=ds/dt is a quantity depending upon ¢, and its
change per unit of time is s=ds /dt, called the tangen-
tial acceleration. Considering P as a small particle
moving in its path in consequence of force acting upon
it, as in the case of a thrown pebble moving under the
action of gravity and the resistance of the air, the
tangential acceleration is not the whole acceleration,
but only that component of the whole acceleration that
is in the direction (¢) of motion. The whole accelera-
tion is by Newton’s laws of motion, the time derivative
of the velocity, of which the speed is simply the magni-
tude; in other words, variation of direction as well as
of magnitude, must be taken into account in the differ-
entiation. (See Art. 85).

Curvature

83. The curvature of a curve at any point is its
change of direction (in radians) per unit length of arc; v.e., the
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curvature 8 d¢/ds where ¢ i3 the slope angle (in
radians) and 8 is the arc length.

(a) When the curvature 18 zero at every point the curve i8
a straight line. [ If dp=o0 identically, then ¢=-constant].

(b) The curvature of a circle is the same at every point
and equal to the reciprocal of its radius.

Let C be the center of a circle of radius a, 4 its
lowest point, and P any other point (Fig. 1); then
¢=< XMP=< ACP=arc AP/CP=3/a ; thus
8=a¢, and ds—ad¢, or d¢ /ds=1/a.

84, The circle of curvature at a point P on a given
curve, is the tangent circle at that point with the same
direction and magnitude of curvature as the curve. Its
radius is therefore R=ds /d¢, and its center C=(X,Y),
is distance R from P in the direction ¢ 4= 2. IfRis
negative this means that the center is actually in the
opposite direction, since ds,d¢ will be positive or
negative, according as ¢ increases or decreases as 8 in-
creases, t.e., according as the curve bends towards the
direction ¢4-r/2 or ¢—= 2. Thus equating pro-
jections of OC and the broken line OPC upon the axes,
we find

(a) X=2-+Rcos(p+4r/2)=r—Rsin =2 —dy /dé.
(b) y=y-+ Rsin (¢ 4= /2)=2+4Rcos p=z-4dz /d¢.
In rectangular co-ordinates,
de=J/(dz? +-dy?) = J(1+4p?) dx,
[p=dy/dz=tan ¢].
d¢=dp/(1+4p?); R=~1+p*) / (dp/ dz).
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In polar co-ordinates,

ds=/ (r2d63 +drt) = J (r* +q7) d6,

[g=dr/dé=rcot y];

o=y -9, [triangle OMP, Fig. 1];

dp=dy+do={(r* +2q*)d6—rdg} / (r* +¢2);

R=(r24-¢q»)t /(r2 4292 —rdq /d#).

Differentiation of Directed Quantities

85. The differential of a directed quantity OP (Fig. 2)
that varies definitely with the time, and whose values add by
the parallelogram law, is a directed quantity PS, whose com-
ponent PR, along OP 3 the differential of the magnitude of
OP, and the perpendicular component R S s the product of
the magnitude of P and its differential change of direction
(in radians).

According to the parallelogram law, (true for veloci-
ties, forces, etc.) OP+4PP'=0P’, so that A. OP=PP’,
NA.OP=NPP'=PS8’, and when P’ approaches P,
d.OP=1im PS'=PS, a tangent to s=—arcAP, of
length ds. Also, the components of PS along and
perpendicular to OP, are PR, =dr, R, S=rd 6.

86. The velocity of Pis the time -Jerivative of the
displacement OP. Its magnitude is 8, and its direction
i8 ¢. The acceleration of P is the time derivative of the
velocity. Its components are therefore 8 in the direc-
tion ¢, (tangential) and sd¢/ dt=3s2d¢ /ds=32 /R,
in the direction ¢+4=2 (normal), where R is the
radius of curvature of the path at P, (Arts. 85, 83).
If we draw OP in the direction ¢, and in length
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s=ds /dt, then the path of P as t varies is called the
hodogragh of the motion of P; and it appears that the
acceleration of P is in direction and magnitude, the
velocity of the corresponding point /?in its hodograph.
If there is no force acting upon the particle P at any
time, then s=o0 or s=constant, and d¢ ~ds=o, or the
path is a straight line. No force acting means then
uniform motion in a straight line. If s=o and
d¢ / ds=constant, then the particle is moving uni-
formly in a circle, and there is an acceleration
towards the center at every point, of constant magni-
tude, (speed) 2 /radius.

In a particle constrained to move in a circle, this is
the acceleration of the tension along the radius. It
appears that the normal component of the force on a
particle is the deflecting component, and the tangential
component is the speed accelerator. In straight line
motion, the normal component is zero, since the cur-
vature is zero.

Exawmpres I11.

1. In the parabola ay==22 find P, and construct PRS
of Fig. 1, in the cases: z=2a, dr=a; r=a, dr==2a;
r=10, da:=3a; r=-—a, dx=——3a; x=-——2a, dx=a,
With a given value of z, what change is made in PRS
by changing dx?

2. Construct points (P) and tangents (PS) of the
semi-cubical parabola ay?=23 for =0, a, 4a. Why is
there no point corresponding to a negative value of z?
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3. Find one arc of the semi-cubical parabola from
z=o0 to any value of z.

8a 9x 4
An, s=ﬁ{(1+m) —1}

4. Find P and construct PR, S of Fig. 2 for the equi-
angular spiral r=ae®, when =0, dé=a,; 6=r/6,
d0=2a; 0==,/3, d0=a; 0==r,/2, d6=—a. Show
that the radius always meets the curve at an angle
of 45°.

5. Draw the points and tangents at 6=o, =/4,
n /2, 3= /4, =, for the curves r==2acos 6§, r=a cos26.

6. Find the curve in which r=a when =0, and
whose polar radius meets the curve at a constant angle

y=tan—lc. [rd8/dr=c; r=ae®/°].

7. Find the length of the arc of the equi-angular.
spiral of Ex, 6, from 6=o.

[ds=J (A 4c2)dr; 8= 4c2) (r—a)].

8. A point P moves so that its distance (z) from a
fixed directriz OY is in a constant ratio (e:7) to its dis--
tance (r) from a fixed focus F; show that a tangent to
the locus between the directrix and point of contact
subtends a right angle at the focus.

[r=ex, dr—=edz,; take PS=ds, where S is on the
directrix; then dr=—z, and dr—=-—er=—r=PF,
so that (Art. 76) F=R,, the foot of the perpendicular
from S on FP.]

9. A point P moves so that the sum of its distances
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(r,7”) from the fixed focii F, F', is a constant (2a).
Show that the tangent at P bisects the angle between
one focal radius and the other produced.

r4r'=2a, dr4dr'=o; therefore take PR, on FP
produced for dr, whence an equal length PR’ on PF"
is d”, and the perpendiculars to r, + at R,, R’, must
meet in & point S of the tangent at P (Art. 76).

10. If the point P moves so that the difference of the
focal radii r, ¥ of Ex. 9 is a constant, show that the
tangent bisects the angle between the focal radii.

11. If the focal radii of P as to fixed focii F, F¥
satisfy the condition r--2r'=3a, find a construction for
the tangent at P; similarly if r— 2r'=3a.

12. Find the ordinate areas, and the polar radius
areas from O, in the curves ay=z2, ay?=ux3, a?y=x3,

13. Find the ordinate area of the circle z2 4-y2=a?
from r=o0, and of the ellipse 22 /a2 4-y2? /b2 =1.

Ans. %z ./(a?—23)4-%a? sin—lg, and b/ a times

the same. The areas of circle a, and ellipse (a, d)
are found by putting z=a and multiplying by 4, giving
za?, nab.

14. Find the polar radius area of the circle r=a
from 6=o.

15. Find the polar radius area from 6=o0 of the
curves of Exs. 1-6.

17. Find the volume of a hemisphere of radius a,
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between its base and a parallel section at distance z;
also the convex surface.

[ The radius of the section at distance =z is
y=u (a2 —=22), and if V be the required volume-
AV=ryiAx where =y} is the area of some section
between the distances z and z4- Az, so that limy, =y.
Thus dV=ry?dz=r (a?—2z2)dx, V=rz(a2—3}22).
If 8 be the convex surface, s its arc section by a
diametric plane perpendicular to the base, then
dS=2=y ds=2radr since s is an arc of the circle
y=J (a*—z?) from z=o0; and S=2=ax].

18. Find the moment of the spherical segment of
Ex. 17 as to its base, and its center of volume.

[The moment of volume as to a plane is, volume times
distance from plane to center of volume—distances on
opposite sides of the plane having opposite signs. The
moment of a volume equals the sum of the moments of
its parts. These suffice to determine moment and
center. Thus, momV'=momV+4 mom AV, and hence
A.momV=momAV=z, AV where «, is some dis-
tance (to the unknown center of volume) between z,
7/, so that limz, =2, and d. mom V=zdV=momdV,
considered as concentrated at the distance z to
which it pertains. Hence d mom V== (a2z—z3)dz,

momV=%(2a.2 z2—z4), and distance of center of

3x 2a? —zx?
volume =(momV) / V=T' Y p—t Take z=a to

make V=rvol. hemisphere, etc.]
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19. Find the volume of a right circular cylinder of
radius z and altitude ¢ and its moment of inertia about
its axis.

[AV=2=z, Ax.c, where x, is between z and .
dV=2=cxdr, V=nrcx?. The moment of inertia of a
volume as to an axis is, the volume into the square of its
radius of gyration as to the axzis. Such radius is between
the longest and shortest radius to volume. Also the
moment of inertia of a volume is the sum of the
moments of inertia of its parts. Thus A.mom-iner.
V=mom-iner. AV=x2AV, d.mom-iner. V=1x2d V=
mome-iner. d ¥, considered as concentrated at distance
z. Moment inertia V=nrcz4,/2; radius of gyration

20. Find the volume of a cone of altitude * whose
base area is a? when z=1; also find its moment as to a
plane through its vertex perpendicular to its altitude,
and the distance of its center of volume from the plane.

21. Find the moment of inertia, radius of gyration
about its axis, and the convex surface, of a cone of
revolution, of altitude z and semi-vertical angle 3.

[rz5tanf* /10,ztanB,/. 8, =x2secftan f].

22. Show that when z=4 the quantity ,/z is chang-
ing one-fourth as fast as z, and that for small values of
h, 2-4-%h is the principal part of \/(44-Ah).

23. A man walks 3 feet per second towards a tower
80 feet high. If he should continue to approach the
top as at 60 feet from the base, in what time would he
reach the top?
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[8?2=6400 422, dz=-—3dt; dt is required when
£==60 and ds=-—100, and is 55.5 4-.. seconds].
24. Two men starting together walk in paths at right

angles, each 3 feet per second; show that one leaves the
other 3,/2 feet per second.

25. A vessel is anchored in 18 feet of water, and the
cable passes through a sheave ‘in the bow 6 feet above
water. If the cable is hauled in 18 feet per minute,
what is the speed and acceleration of the vessel when
30 feet of cable are out?

[If Il = cable out at start, @ = horizontal distance
to anchor, and 8, x=same after ¢ minutes, then
(1—8)2=(a—1x)? 4-24?; ds=18dt, and when [—s=30,
we have =30, z=32].

26. A particle P moves in a plane curve about a
fixed point O; find its radial and radial normal com-
ponents of velocity and acceleration.

Take an initial axis OX, and let {r,0} stand for a
directed quantity whose magnitude is r in the direction
0 radians from OX, this symbol in particular standing
for OP so that =< XOP, r=Ilength OP. Then by
Art. 85, velocity

=d(OP) /dt=d{r,0} /dt={r,0} 4 {6, 0+12’}=0P
To differentiate again, we have,

d{r,6} s dt={r,0}4-{r6,6+ 3}

d {r6, 045} =1rb+r8, 6+ 1 +{rh1, 04}
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and adding, we find acceleration
=d(0P) /dt={r—r62,60} 4 {2r64rf, 6+ 31
The required components are therefore,

velocity, r=dr/dt;
r0=rd0  dt

; ddr d01

acceleration, r—r6? =E_d—t T
2ra+ro' [rz

27. If a particle P move about O in a plane curve so
that the radius OP describes equal areas in equal times
then the whole acceleration is radial, and conversely. [If
v=qct, then (Art. 782) dv=r2df=cdt, or r2df /dt=r,
a constant, and the radial normal acceleration is zero; so
conversely. The radial acceleration is then the whole
acceleration and is

poddr_ dor 1&}_ e
@d T diR 4redd [?Edo pr
¢ (d d1l
=~ @t
from 1,/dt=c/r?d6. This finds f as soon as the path
is known.]

28. If a planet P move in an ellipse with the sun O as
focus, and the radius OP describe equal areas in equal
times, show that the force moving the planet is towards
the sun and varies directly as its mass and inversely as
the square of its distance.
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[This was deduced by Newton, the premises being
Kepler’s laws obtained by astronomical observations,
and it led to the law of gravitation. In the ellipse of
focus O, major radius @, minor radius b, excentricity e,
and direction OX along the major axis toward the
center, 1 /r=a(l—ecos §) /b?, and f=—ac? /4b2r2.
The constant ac? /4b? is the force per unit mass per
unit distance, since acceleration = force per unit mass.

29. If the cubes of the major radii of the orbits of
any two planets are as the squares of their periodic
times (Kepler’s third law), show that the gravitational
constant is the same for all planets.

[The period of one revolution being T, then area of
orbit = c¢T=m=ab, and the gravitational constant is
ac? /4b2=mn2ad /4T?].

30. Find the differential equations of the curve formed
by a flexible cable with fixed ends and supporting a
load continuously distributed along the cable.

[Take a tangent and vertical line through the lowest
point O of the curve (so that the tangent is horizontal)
for axes of reference; let P=(z, ) be any point of the
cable; H the tension at O, and T the tension at P
(tensions are tangential because the cable is flexible); W
the load supported by s=arcOP. Then considering
the equilibrium of arc OP under the forces H, horizontal,
W vertical, T along the tangent at P, and the differential
triangle PRS, we find H: W:T=PR:RS: PS=dx:dy:ds;
in particular T?=H?+4 W2.]

31. Find the form of arc of a suspension bridge cable
and the tensions.
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[Practically, W==cx, and putting H=ca, from
H:W=dz:dy we find ady=zdx and y2=zx?2a, a
parabola. Let (h,k) be one end of the cable; then
k2=h?/2a or a=ht/2k; T=c. (a%+122),
=cJJ(a%42ay), =c(a+y) approximately, if y is
small compared with a, <.e., if k is small compared
with A.]

32. Find the tensions and form of arc of a cable with
uniformly distributed load.

[Here W=cs, and putting H=ca, then T=c,/(a*+&*).
From W:T=dy:ds, we find dy=sds/./(a?-482),
y=JJ(a?+8?)—a, T=c(a+y). Ifatone end s=,
y=Fk, z=h then k4a=,/(a%412), a=(12—k?),/ 2k,
=h? 2k approximately if k is small compared with
l so that I is nearly straight. From W:H=dy:dx,
we find _

dr=ady /s=ady / v (a+y)?—a?;

aty— JGTR —a;
a

r=alog

I_aty—JaTyr—at
a ’

which gives

a X _Z
9 (ea +e ° )=a-+y,
z
a catenary. Using the expansion of ¢? we have approx-
imately y=x2 /2a, a parobola.]

Curve Tracing

87. To trace the locus of F(z,y)=o, take a series
of values of z, and for each value z=a find from the
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equation the corresponding values y==>b,0'..., and plot
the points (a,b), (a,V’),... The points so plotted on
each verticle line z=a are the points where the several
branches of the locus cross that line. When the vertical
lines are close enough the form and continuation of
each branch will be shown by its dotted construction. )
This is the primitive method; an improvement consists
in drawing a short dash at each plotted point in the
direction of the tangent, when fewer points are neces-
sary. The tangent is drawn from its slope dy/dv
which is —F, (z,y) / F,(z,y) where the numerator and
denominator are the partial derivatives of F(z,y) as to
z, y, respectively; viz., since F(z,y) remains zero as z, y
change continuously, therefore d F(z,y)=10, or by Art.
34 (a), F,(z,y)dz+F,(z,y)dy=0. A further im-
provement is to obtain an accurate idea of the general
form of the locus from a systematic study of the equa-
tion, when it will be necessary to plot the locus with
care.only at a few critical points. The methods of such
study will be considered in detail.

. 88. Ezamine the equation for symmetry as to axcs and
origin. The test of symmetry is that the substitution,
for the co-ordinates (z,%), of the co-ordinates of the
symmetric point, in the equation of the locus, must
leave the equation unaltered. E.g., the locus of

x2? y2
catE=l
is symmetric as to the z-axis because changing (z,y), into

(z,—Y), the symmetric point as to the z-axis, leaves
the equation unaltered. Similarly, this locus is sym-
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metric as to the y-axis because changing (z,y) into
(—=,y) leaves the equation unaltered; and it is sym-
metric as to origin, because changing (z,y) into
(—=, —y) leaves the equation unaltered. In general,
the substitution, for the co-ordinates z,y, of the co-
ordinates of the symmetrical point, in any equation,
gives the equation of the symmetric locus; e.g., the
locii of y2=8x+412 and y?=—8x+412 found by
replacing (z,%) in the first by (—=z,y) are symmetric
locii as to the y-axis since if any point (a,b) satisfies
the first, then (—a, b) satisfies the seeond.

89. Examine the equation for limits of real value of
zand y. Ify is imaginary when z lies between a and b
then no part of the locus lies between the vertical lines
z=a and z=>b; for although the imaginary value of y
is in such case an algebraic solution of the equation,
and (%, y)) is a point of the locus in an algebraic sense,
yet no point in the plane of representation corresponds
to it. E.g.. in 2? /a?4-y? /b2=1 where a,b are
real numbers, if ¥2>a2? then y is imaginary, and if
y2>b2? then z is imaginary; hence the locus lies be-
tween the vertical lines z=—==a, and the horizontal
lines y==%b.

91. Directions to and at infinity. The direction whose
slope. is the limiting value of y /z=tané as the point
(z,y) approaches infinity on a distant branch is the
direction to infinity of that bramch. The direction at
infinity of the branch is the direction given by the limit
of the slope dy/dx=tan¢ at the distant point (z,y)
on the branch. This is identical with the direction to
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infinity; for limy /z=limdy/dx by the theory of
indeterminate forms, when both z and y approach
infinity, and when limy =0 or « in consequence
of ¥y or  approaching a finite limit then also
limdy /dx=0 or w. E.g., if for a finite value = we
have y=o0, then 2’ being near to z, ¥ will be finite, and
Ay=y —y=—00, 80 that dy—owo when dz is infinite,
and dy/dx=c00 =y x. It appears that a distant
branch with a limiting direction is very nearly a straight
line of slope limdy /dx=limy /2. A spiral winding
indefinitely around the origin and extending indefinitely
outward is an example of a distinct branch with no
direction to or at infinity.

92, Asymproric LiNe. When all the points of a
distinet branch approach more and more nearly coinci-
dence with the distant points of a given straight line,
such line is the asymptote of the branch. To have an
asymptote, it is evident that the branch must have a
direction to infinity; also, the tangent to the branch at
a point approaching infinity must have this asymptote
for its limiting position, so that the asymptote is a line
tangent to the branch at infinity. If (z,y) be a point on
the branch approaching infinity, then excepting vertical
branches for which limy /z=x, we shall have
limy /z=m, the slope of the asymptote, and the
ordinate of the asymptote that passes through the
point (z,y) on the branch will be mz+4-b, where b is
y-intercept of the asymptote. The condition that the
branch approaches coincidence with the asymptotic
line is that the difference of their ordinates to the same
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abscissa, or (mz--b)—vy, opproaches zero when =z
approaches infinity. Thus b=Ilim (y—mxz). Denoting
y—mz by g, we have then to put y=mz4-q in the
“equation of the locus and in the resulting equation for-
¢ in terms of z find the limiting value of ¢ as =
approaches infinity, under the condition that g is to be
finite. If the equation between ¢ and z is algebraic,
we divide it by the highest power of z and find the
limiting equation by putting =o. The value of ¢
from this equation is the required y-intercept of the
asymptote.

83. For example find the directions to infinity and
the asymptotes of zy?—23—2ay?-+ad=0. Divide
this by 28 and put z=o0 ; if ¥ be supposed finite we
obtain o=o, which finds no finite value of ¥ when
=00 ; if y /2 be supposed finite and equal to m, we
find m? —1=o0, which gives two directions to infinity
of slope 1 and —1 respectively. Divide the equation
by y? and put y=c0 ; if z be supposed finite, we find
2—2a=—0. This is therefore a vertical direction to
infinity whose asymptotic line is t=2a. To find the
asymptotes of slope m=1 or —1, put y=mzr-4q in
the given equation, and it becomes, since m?=1,
2 (mg—a) 22 4- (92 —2amq) r—2aq? 4-ad =0, dividing
this by 22, we see that if ¢ remains finite as  increases
indefinitely, we must have in the limit, mg—a=o0 or
q=a/m=ma. Thus y=m(z4a)==(x+a) is the
equation of the asymptote of slope m==1.,

(a) Show that, the terms of highest degree in the equation
of a locus, when equated to zero, give the equation of the lines
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to infinity through the origin; viz., in the above example,
zy? —z8=0, are such lines, etc.

94. Ezamine the equation for regions of rising and
Jalling branches (from left to right) and resulting crests
- and hollows.

In other words, note from the equation where ¥ in-
creases, where y decreases, and where it is at a maximum
or minimum value. If the equation does not show
this readily, it is determined by the values of (z,y) that
make dy /dz positive in the first case, negative in the
second case, and where dy /dz is changing sign in the
other cases.

95. Examine the equation for regions of concavily
upward, concavity downward, and consequent points of
inflection,

In other words, note where the tangent turns counter-
clockwise as its point of contact advances to the right
(which is shown by the slope p=dy /dx increasing or
by dp /dx positive) where the tangent turns clockwise
(which is shown by the slope p==dy_ ”dz decreasing or
by dp ./ dz negative) and where the tangent is changing
direction of turning (which is shown by dp/dz chang-
ing sign.)

96. Eramine the equation for multiple potnts, and trace
the locus in the neighborhood of a multiple point.

A multiple point is a point where two or more
branches of the locus intersect; it is a double or triple
point, efc., according to the number of branches.
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At such a point p=dy /de=—F, (z,y) / F, (2,¥),
(Art. 87) must be correspondingly multiple valued,
which can only be (excluding discontinuity) when this
fraction is 0 /0 for the point (z,%). Thus a multiple
point must be a solution of the simultaneous equations
F(z,y)=0, F,(z,y)=0, F,(x,y)=o0. For such a
point we have by the theory of indeterminate forms,
p=—dPF, (2,y) /dF,(x,y) which becomes, after re-
~ placing dy/dxz by p, and x,y by their values at the
multiple point, a quadratic for p. If this quadratic
is determinate the point is a double point; and the
branches intersect, or touch, or are imaginary, accord-
ing as p has two different or eqnal real values or two
imaginary values. Inthe latter case the multiple point
is an 4solated point of the locus with no real point next
to it. In general, if (x,, y,) is the double point, we
put =z, 4+A, y=y, +Fk in the equation of the locus,
and trace .the locus for small negative and positive
values of A. This is, in effect, transforming the axes
to parallel axes through the multiple point, with A,k
as co-ordinates to the new axes. It is easily shown
that the terms of lowest degree in the resulting equation
for (h, k) when put equal to zero, will be the equation
of the tangents at the multiple point, which is now
made the origin; and this equation determines at once
by its degree, the order of the multiple point. If m be
the slope of one of these tangents, we trace the branch
to this tangent by putting k=mh 4-q in the equation
of the locus, aud determine from the resulting equation
in g, A, the principle part of ¢ for small positive and
negative values of A, and thence the position of the
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corresponding point (k, k) above or below the tangent,
according as ¢ is positive or negative.

97. Trace the locii of the following equations, taking
convenient lengths for the constants.

2a,y=a:2 -—-2ax-|—ab;
3a2y=—128—3az? 43 (a®+b3) z4-al¢c ®20)

Sefien [+ (3]

a? y2 —qa2r%t—218,

y2=28 /(2a—x), the cissoid; if OP intersect the ver-
tical line =2a in Q, and the circle on the abscissa
2a as diameter in R, show that OR= PQ.

ay?=13; ay?=(x—a)? (z—Db) (>, <,=b).

2¥-y¢=aq}, the hypocycloid described by the rolling
of a circle of radius a4 inside a circle of radits
0OA=qa, the tracing point being on the circumference of

the rolling circle and on the axes when in contact with
the fixed circle.

=8a8 / (z* 4-4a?), the witch; draw a circle with
vertical diameter OA=2a; draw a line from O to
meet the circle in R and the tangent at 4 in @, when
the abscissa of @ and ordinate of R are the (z,y) of a
corresponding point P of the witch.

284 y3 =6ax?; 284 y3=3axy,
28 4 y3 =ad; zt—2a2y=ay?d.

(z? +y?)?=a?(z? —y?), the lemniscate, if 7, 7 be
radii to P from focii F, F’ on the z-axis such that
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FO=0F=a/. /2, then rr=a?/2; with polar

radius r from O, 72 =a? cos 26.
x

z bt
y=% (¢*+e %)=a cosh g, the catenary.

98, The same methods may be employed in tracing
the locii of polar equations. In looking for symmetry
the symmetric of (r, #) has several forms that must be
tried separately: e.g., the symmetric points of (r,8) as
to OX are (r,—#0), (—r,=~—8@), etc. A direction to
infinity is a value of @ that makes r=o, and the cor-
responding asymptote is found from the limit of the
polar subtangent OM’=r2d6 /dr, whose direction of
measurement is 6 —= /2. A direction 6 that makes
r=o0 is the direction of a tangent at the origin, since
that is the limiting direction of the chord OP as P
approaches 0. The locus recedes or approaches the
origin as 6 increases if r2 is increasing or decreasing,
and it is concave towards or from the origin according
as tany=rd0 /dr increases or decreases with 6. The

following equations are given to trace:
)

r=a0, the spiral of Archimedes; r=ae7’, the equi-
angular spiral.

r=2asind, r=2a cos b, r=a sec20, r=a /9.

‘ 2 8
r=asec % ; r=asin 20, r==a cos 20; r=asin g .
r2=a?cos 20, r=a (1 —cos 0), the cardioid.
r=a-+-bcschd,; r=a (sec20--tan26);
r=a?csc 62 }-b2 sec 62.

r=acosfd4-bsinb; r=acos204bsin26.
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Envelopes

99. Let three variables z,y,¢ be always connected
by a given equation F(z,y,t) =0, then to a given point
(z,y) corresponds one or more numbers (the numbers
of P) which are the solutions of the given equation for
t in terms of the given values of (z,). We assume
every point of the plane to be so numbered by this
equation. The equation F(z,9,t)=0 may be the
equation of any locus we please in the plane by select-
ing for t a proper functional value t=f(z,%). In other
words, consider any given locus in the plane, and select
from point to point of that locus one of the numbers of
each point so that this number varies continuously
with the position of the point; then the continuous
assemblage of such numbers form a definite function
t=f(z,y). It is obvious, on account of the multiplicity
of the numbers of each point, that it may be possible
to find different functional values of ¢ such that for each,
F(z,y,t)=0 shall be the equation of the same locus.
Since dF(z,y, t)=o0 on such curve, we have (using the
notation of Art. 34 for partial derivations as to the
first, second, and third variables)

() Fy(z,y,t)dz+F, (z,y,)dy+ Fy (z,y,t) dt=o.

This is an equation for the slope dy/dx at the point
(z,y) on the given curve, remembering that d¢ is of the
form Ldz-Mdy depending upon the given locus.

100. The n-curve. The locus of all points having
the same number n is the n-curve. Its equation is
F(z,y,n)=o0. Thus the o-curve is F(z,y,0)=0, the
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I-curve is F(x,y, I)=o, etc. The slope of the n-curve
is given by t=mn, dt==0 in 99a and is

(a') F1 (=, y,'n)dx—{-Fz (1‘, Y, ")d?/=0-

101. The self-intersections. The points (z,y) that
simultaneously satisfy F(z,y,n") =0 F(z,y,n)=0 may
be called the »’. n points, because they are each points
of number n’ and n; they are the intersections of the
n'-locus with the m-locus. The limiting positions of
these intersections as n’ is taken nearer and nearer and
to its limit n are the n.n points, or self-intersections of
the n-locus. To find these n.n points we must replace
the n-locus by another that always intersects the n-locus
in the n'.n points and only those, and that does not
reduce to the n-locus itself when we put n'=n. This
locus is given by

[F(z,y,7)—F(z,y,m)] / (W' —n)=o.

since any point (z.y) that satisfies this equation and
F(z, y,n)=o0, will also satisfy ¥ (z,y,n')=0 and so be
an #'.n point, and conversely every #'.n point satisfies
the above equation. Taking m as the original value
and n’ as the new value of ¢, so that the equation is,
A F(z,y,t) / At=o0, we see that its limit is Fy (z,y,n)=o0.
Hence

(a) The self-intersections of an n-locus are its tntersections
with the locus of the partial derivative of its equation as to its
number (regarded as the original value of the variable t);
1. e, the n.n points are the values of (z,y) that simul-
taneously satisfy F(z,y, n)=o0, Fj(z,y,n)=o0.

102. Ry solving the preceding simultaneous equa-
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tions for (z,y) we find the co-ordinates of seif-intersec-
tion of the n-locus each in terms of the number n of
that locus; then by giving n all values, we find the
‘assemblage or locus of all n.n points for all values of n,
or the locus of self intexsections. By eliminating n between
the above simultaneous equations (by solving one for
n and substituting its value in the other) we evidently
obtain the equation of the locus of self intersections in
terms of (x,y) alone. We may select the variable
function t=f(z, y), so that F(z,y,t) =o is the equation
of the locus of self-intersections, viz., f(z,y) is a solu-
tion of F; (z,y,t)=o0 for tin terms of x,y. The slope
of the locus of self-intersections is then given by 99(a)
which reduces since Fy (z,y,t)=0 to

@) F, (x,y,t)ydz4F, (z,y,t) dy=o.

103. The multiple points of an n-locus are points of
self-intersection of that locus. For at a multiple point
(z,y) of the mn-locus, F(z,y,n)=0, we have also
F, (z,y,n)=0, F, (2,y,n)=0 (to make dy/dzx=0,0).
Thus, substituting t=n in 99(a) which is true for all
values of (z,y) of number ¢, even when df is not zero,
we find that Fy (z,y,n)=0; t.e., by 101a, the multiple
point (z,y) on the n-locus is a point of self-intersection.
We divide the locus of self-intersections into that of
ordinary points and that of multiple points of the
n-locus.

104. The locus of ordinary self-intersections ¢3 met
tangentially at each point by the n-locus on which that point
18 a self-intersecton. For the slope of the locus of self-
intersections at such point (z,y) whose number is n, is
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found by making ¢t=n in 102a, and since the differ-
ential co-efficients are definite non-zero values (because
the point is an ordinary point on the n-locus) therefore
this slope is the same as the slope of the n-locus, given
by 100a; t.e., the two locii meet tangentially. This
result does not hold on the multiple point locus, since
then F,(x,y,m)=0 F,(x,y,n)=0; and in general
dy / dz=o0/ ¢ signifies that the value of dy /dx at such
limiting point depends upon the manner of approach
of (z,y) to their limiting values, and is otherwise
absolutely indeterminate. Now on the n-curve, we are
to find the limit of —F, (z,¥,n) /' F, (z,y,n) as (z,y)
approaches its limit on the locus F(z,y,n) =o0; and on
the multiple point locus we are to find the limit of
—F, (z,y,t) / F, (z,y,t) as z,y,t approach their limiting
values wherein ¢ is a variable approahing . and con-
ditioned by F,(x,y,t)=0. These are certainly differ-
-ent methods ot approach and give in general different
limiting values for dy/dz. E.g., on the n-curve
(y—n)*=(2—a)? the point r=a, y=n is a multiple
point whose locus, as n varies through all values, is the
vertical line x=a. This is the only locus of self-
intersections, as may be shown by eliminating n be-
tween this equation and the n-derivative, y—n=—o0, and
its slope is dy ~dz==oc at every point. On the contrary,
the n-curve has two branches y—n== (z—a)l that
meet to form the multiple point at x=a, y=n, and
on these branches dy/dr==§(x—a)t whose limit
when 2 approaches a is zero, t.e., the slope of every
n-curve is zero at its multiple point, and it therefore
meets the multiple point locus everywhere at right
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angles—quite the reverse of tangential meeting. In
general any definite motion of a curve with a multiple
point, as a lemniscate which is a figure 8, generates a
system of m-curves, in which » may be taken as the
time at which the generating curve is an n-curve; and
such motion can be so determined that the locus of the
multiple point shall meet the n-locus at any angles we
please, constant or varying with the locus.

105. If a given locus is met tangentially at every point
by an n-locus through that point, then it is a locus of self-
intersections. For, take the equation of the given locus
as F(z,y,t)=o0 where the variation of ¢ with (z,y) is
determined by the condition that t=n at the point of
tangency (z,y) of an n-locus. The condition of tangential
meeting at, (z,9) is then that the slope given by 99a
when t=n is identical with the slope given by 100a.
Thus, making {=n= and subtracting, remembering that
t is a variable so that dt=o for any continuous series of
values of (z,w) on the given locus is inadmissible, we
find F, (x,y,n)==0 .e., any point (z,%) of the given
locus is a self-intersection. *The complete locus that
satisfies the above condition of tangency or envelop-
ment by the n-curves will be called the envclope of the
system of n-curves. This envelope will not in general
include the multiple point locus and will be simply the
locus of ordinary self-intersections.

106. Let F(x,y,t)==0 be the equation connecting
the volume r, pressure y, and temperature ¢ of a unit
mass of gas; then the n-curves of this equation are the
so-called isothermal lines of the gas of temperature n.
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For the so-called perfect gas zy=at, and the isothermals
are hyperbolas. An intersection of two isothermals of
different temperatures implies an unstable condition of
the gas, and is in general impossible.

107. Let F(x,y,z)=0 be the equation of a surface
in which XO0Y is a horizontal plane, and z is the height
at the point z,y,; then the n-curve F(x,y,n)=o0 is the
contour line, on the plane XO0Y, of points on the surface
of altitude ». In contour maps, we have also no inter-
section of contour lines of different altitudes, because to
each point (z,y) corresponds only one altitude number.

108. Find the envelope of the following systems of
curves, m, p, ¢, {, etc., denoting variable parameters.
For straight line systems draw also a sufficient number
of lines of each system to show the envelope graphically.

(a) y=mz4-a/m; . y2=4azx
(b) (y—mz)2=0a?m?2==b2; 22 /a2 xy? /br=1
(¢) =zcost+ysint—a=0o; : 22 4y?=a?

(d) If points @, R, move uniformly along straight
lines OA, OB, show that QR envelopes a parabola.

[z/t+y/ (at4d)=1; (az+y)2+42b(ax—y)+4b2=0]
(¢) Find the envelope of a line of constant length
(@) moving with its ends in the axes. [z/p4y./9=1,
p?4-gq?=a?, treat p, ¢ as functions of ¢, then on the
envelope zdp /p?+ydq/q>=0, pdp+qdg=o0, which
gives z/p3=1vy /q® by eliminating dp, dg. To elimin-
nate p, ¢ denote for the moment the common value of
the members by r; then substituting in preceding
equation gives r=1/a2, etc. Ans. 234 yl=at]
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(f) Particles are started from the origin with equal
speeds in varying directions 6, in a vertical plane; find
the envelope of their paths. ‘

[x=atcosd, y=atsind—gt2 /2, and the path is
y=ztanb—gz? /2a2cos862. Ans. y=a? /29—g2? /2a]

(g8) Find the envelope of the variable ellipse
z? /p?4-y? /q?*=1 of constant area ma? (pg=a?);
also the one of fixed director circle (p?-q2=a?);
also the one in which p4-¢=a.

Ans. 422y?=aqa?; (z*y)2=a?; r¥4yl=al.

(h) Find the envelope of the normal to the parabola
y2=dar. [y=m(@—2a)—am3; 27ay?=4(r—2a)3]

(i) Show that the self-intersection of the normal of a
given curve at 2,y is the center of curvature of the
curve at (z,y).

[¥—y=—p(xX—2) /p where z is the variable para-
meter, ¥ a function of = given by the equation of the
curve, and p=dy/dx. Ans. X=zx—p(14p2?) /9,
Yy=v+ (1 +4p?)./q, where g=dp /dz, and these are
~ the co-ordinates of the center of curvature (Art. 84.)]

(j) Show that the normal of a curve regarded as a
rigid line terminating in the corresponding point (z, %)
of the curve rolls on its envelope without slipping.
[Xx=2—Rsin ¢ gives dX=dx— Rcospdp—sinp dR
=—sin ¢ dR, since Rcos ¢pd p=—=ds cos =dz. But ifsbe

the arc of the envelope. dx=d8 cos (¢ +g) =—dssin¢.

Hence ds=dR, and hence A8=AR, or increase of dis-
tance R on the normal between 2,y and point of con-
tact X, y equals arc rolled over.]
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CHAPTER IV
Integration

109. Variation. To give a variable z, a series of
values one after another, determines a variation of z. By
any variation of z, a variation of Az is also determined,
and any function of z and Az also varies through the
same number of values as Az. E.g., r=1, 3, 7, 10,
is a variation of z from 1 to 10, in which Az=2,
4, 3 where successively Az=2 corresponds to z=1,
Arz=4 to z=3, Ar=3 to z=7; we have also
rAr=2, 12, 21; xz2Ar=2, 36, 147; (2?+=z)Ar=A4,
48, 168; (z*+ zsin Az)Ar=—=2-4-sin2, 364 12sin4,
1474-218in3; and so on. Another variation from 1
to 10 is z=1, 2, 4, 5, 7, 9, 10; in which Az=1, 2, 1,
2,2, 1; zAz=1, 4, 4, 10, 14, 9; =z2Az=1, 8, 16, 50,
98, 81; (z24-2)Az=2, 12, 20, 60, 11, 90; etc. Another -
variation z=1,23,4,5,6,7, 8,9, 10, in which .
Az=1, always, is on that account called uniform
variation. The general variation of n changes from a
to w will be denoted by z=a,b,c,... [,u, in which
Ar=b—a, c—b, ... u—L

The final value x==u, may be considered either as a
constant or a variable, —in the latter case u is another
symbol for an original value of z, regarded as reached
by variation from the initial value «; and it may be
considered as used merely to prevent confusion between
the final value and the intermediate values.
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110. Summation. The. syinbol 3 f(z, Az)=‘‘the
sum from a to u of f(z, Az)’’ stands for the sum of the
values of f(x,Ar) in a variation of z from a to u. E.g.,
when z=1, 3, 7, 10, EioxAx=35, Eioxz Azr==185,
3’ (22412) Ar=220. When z=1,2, 4,5, 7,9, 10, the
same sums are 42, 254, 296, respectively. = When
r=1,2,3,4,5,6,7, 8,9, 10, the same sums are 45,
285, 330, respectively. A sum will therefore in general
depend upon the variation of z between its assigned
limits. If u is a variable in the above sum, such sum
is what is called an tmperfect function of u, that is, it
depends upon, but is not determined by the value of u;
it requires the method of variation of the variable z
from its initial value a to its final value u to be also
asgigned. This imperfect function has, however, a
definite difference f(u,Au), since changing u to u4-Au
changes the sum by the term f(u,Au); i.e., f(z,Az) is
the difference of the sum for any tinal value of z. It is
in general an imperfect difference <. e., not the difference
of a function.

111. Theorem 1. The sum from a to u of the differ-
ence of a function is equal to the change from a to w of the

Jfunetion. Insymbols, 37A pz= “ Pr=cu— a.
a

For the successive values of A¢z in any variation
z=a,b,c,... u, are ¢h—eon, ¢c—¢b, ... pu—dol,
and adding them, the intermediate values ¢b, —¢b,
¢c,— o, ... pl,—o!, all cancel, leaving only éu—doa
for the sum. This result may also be stated as follows:
The sum of the successive changes of value of a function ts
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tt8 tatal change of value. As an illustration verify that
10

EioA. a:2=2:° (2zAr4+Ax2)= . r2=99, for each of

the variations of Art. 109.

(a) It appears that 3 A¢z is a definite function of
u, 1. e., independent of the variation from a to u, and
that it is ‘‘a function whose difference is A¢u’’; 2. e.,
S:A_l.

112. As exercises, show that for any given variation
z=a,b,c, ... g,h, 1, ... ,u, we have:

(a) So[¢f (@, Aax) 4" f, (z,A7)]
=3 f(x,Az)4-¢" 3 f, (2, A).
In words, the characteristics of summation for a given

variation, i8 distributive over a sum and commutative with
a constant factor.

(b) 37f(x,A0) =3, f(z,A2)+ 2} (=, Az).
(c) E:f(x: Ax) = EZf(x,—Ax)

113. Continuousvariation. Let there be an unending
number of successive variations from a to u, of greater
and greater number of changes, and formed according
to some definite law. In the variation of n changes,
every value of Az will be smaller* than some number
hy; hpcannot be smaller than (u—a) /n, the value of

*We use the terms ‘larger ’ and ‘“smallcr’ with reference to com-
parative magnitudes, which are positive numerical values. The magni-
tude of any number is the positive square root of its square, if it isa rea
number, and in general, it is the positive square root of the sum of the
squares of the real components of the number.
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Az when the variation is uniform, but it is otherwise
any number we please according to the variation. If
we form an unending series of variations in such a way
that the superior limit A,, of every Az in the variation
of » changes, approaches zero as a limit as n approaches
infinity, then such a series will be called an approach to
a corresponding continuous variation from a to w. In
other words, in the variation of » changes, when n is
very large, the values of Az will each be very small, so
that the variation is approximately continuous. There
are many kinds of continuous variation from a to u
according to the defining series of variations of greater
and greater number of changes and smaller and smaller
values for each change. Uniform continuous variation
is the limit of a series of uniform variations, in which
hy=(u—a)/n. In a non-uniform variation, however
nearly continuous, some changes may be very many
times larger than other changes, although every change
may be very small.

114. Continuous summation—Integration. The limit
of the sum of a difference f(z, Az), as the variation of z
from its initial to its final value approaches continuous
variation, is a continuous sum, or integral. For example,
we will find the values of the integrals, lim 3} zAz,
lim 3722 Az, lim 3;zAz? for uniform continuous varia-
tion. The uniform variation of » changes from & to
w is z=a, a+4h, a42h,...a4+(nm—1)h,u, where
nh=u—a=nAzr. With this variation the above sums
are, since 1424 ... 4n—1=n(n—1)/2, and
124-224-... 4 (n—1)2=n(n—1) (2n—1) /6,
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the first =A[na+n(®—1)A /2]
=w?—a?)/2—h(u—a)/2;

the second =A[na?+4-n(n—1)ah+4n(n—1) (2n—1)A2 /6]
=(u3—a3) /3—h(u2—a?) /24-h2(u—a) /6;

the third =#A times the first.

Hence the limits of these sums for n=ow or A=o0
are (u2—a?) /2, (ud —ad) /3, and o, respectively.

116. We shall show that under certain conditions
an integral or continuous sum exists in which dif-
ferent methods of approach to continuous variation
have no effect upon its value; and we shall assign a
notation that embraces in compact form the fundamental
facts and ideas of such limiting sum, and determine,
by a fundamental theorem, shorter methods for evalu-
ating integrals than the full process, which is compli-
cated even for uniform variation, (See Art. 114).

We consider in the first place, only sums 37 f(z, Az)
in which the proportional difference Nf(z,Az) ap-
proaches a definite differential in terms of z,dx when as
usual, N approaches infinity and Az approaches zero so
that NAz approaches any assigned value dx.

There are, in fact, nq general methods for determin-
ing whether an integral exists or not when no such
differential exists. Asin Arts. 20, 21 the differential,
lim Nf(z, Az) is of the form ¢’z.dr when z is a real
variable, and may be so whether 2 is real or imaginary.
E.g., lim Nx? Az=z2dz, lim N(2?4-zsinAz) Az=x2dz,
lim NA (28 /3)=z2?dz. As in these three examples,
8o in general, many different differences will lead to the
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same differential, and some of those differences must
be perfect when the differential is perfect.

116. Lemma. An integral over any range of variation
8 zero when the differential pertaining to the integral is
identically zero. In symbols, lim 3 f(z, Ax) =0, when
lim Nf(z, Ax) =o, tdentically. For let = be that value
in any variation of n changes which corresponds to the
largest term f(x,Ar) among the n terms of this type;
then the sum of the » terms is certainly not larger than
nf(z, Az), (the magnitude of a sum cannot exceed the
sum of the magnitudes of its terms); but by hypothesis,
and for the special case N=mn, every product of the
type nf(z,Azr) approaches zero when n approaches in-
finity and Az, zero; and hence the given sum, that is
always not larger than one of these products, must
approach zero.

117. Theorem 2. Integrals with identical differentials are
also identical, for any same method of approach to continuous
vartation. In symbols, if lim Nf(z, Az) =lim N¢ (z,Az),
then lim 3, f(z, Az)=Ilim 3 ¢ (z, Az).

For the difference of these integrals is the limit of
the difference of the corresponding sums, which is
lim %[ f(z,Az)— ¢(x, Az)], by Art. 112a; and this
integral is zero by the preceding lemma, since by
hypothesis lim N[f(z, Azr) —¢ (2, Az)]==0 identically.
While the two integrals are identical for any same puts
of integration from a to u, t.e., for the same method of
approach to continuous variation from a to u, yet each
may change value with change of path of integration.
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118. Notation. Since the value of the integral
depends only upon the corresponding differential and
the path of integration, whether the difference of the
sum has one or another of the many values whose
proportionals approach the given differential, therefore
the integral is named most definitely as ‘‘the integral of
the differential over the given path.”’ Since we can write
lim 37 f(z,Az)=Ilim 3} N-1. lim Nf(z,Az) by multi-
plying by N-1N=1 at each stage of the approach, we

therefore find lim 3 N-1= f " say, as the characteris-
J

tic of integration of the differential from a to u; and if

lim Nf(z,Az)=1im N¢ (z, Az)=... =¢'zdx, the identi-

cal integrals lim 3 f(z, Az)=Ilim 5 ¢(z,Az)=..., are

each expressed by f * ¢' rdx=‘‘integral from a to w of
a

¢'zdz.”’

119. Theorem 3. The integral of the differential of a
fanction i independent of the path of variation between given
limits, and s equal to the total change of value of the function
between the limits.

In symbols, “d dr= N dx.

a a
For since lim NA ¢z=d ¢z, therefore by the notation
established by Th. 2, and by Th. 1,

jmdd,x:lim 22A¢x= lim (¢pu— ¢pa) =¢u — da.
From this result follows

(a) ﬂ ddrz="*‘a function whose differential 78"
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déu=d-l. dou, and that vanishes when u=a;_ i.c.,

f =d-1,

Since d=lim NA therefore, formally, d—1=1lim A—1N-1
=lim EN—1=f, irom 3=A-1 This result shows that

the formal relations of d, f , are consistent, ¢.e., in ac-

cord with established facts.

120. Inverse Prin. 1. If d¢pz=dyz when z varies,
then is ¢z—yz a constant for variations of z.
For trom the given identity and Th. 2

j:d¢x=j:d|//x

i. e, by Th. 3, pu— pa=yu—ya, or pu—yu=ca—-ya,

a constant for variations of z=u.

121, The preceding results extend to variations,
sums and integrals, in any number of variables. Thus
a variation of (z,%) will be a series of sumultaneous
changes of (z,y) from given initial values (a,d) to any
final values (u,v); such variation determins a series of
values of (Az, Ay) and a series of values of any function
f(z, Az, y,Ay). There is no change in any of the pre-
ceding theorems and proofs except the slight changes
consequent upon the introduction of the additional
letters required for the values, changes of values and
limits of the additional variables. The differentials in
real variables z, ¥, etc., are of the forms

f'5.dz, £, (5, 9)d5+S, (5,9) dy, ete.
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The differential f'zdz where f'z is a continuous
function of z is always a perfect differential dfx. E.g.,
if f'zis real, then draw the curve y=f'r, when the ordi-
nate ares, fr, of that curve from z=a to any final value
ot z, is a function of z whose differential has been shown
to be dfr=ydx=f"zdz, (Art. 77). The differential
in more than one real variable is not, however, in
general perfect, since this requires that the differential
co-efficients be partial derivatives of a given function of
the variables. The differentials in two real variables
z,y include differentials in an imaginary variable
z=x+4yJ—1. When the differentials are imperfect
then their integrals between given limits (a,b), (u,v)
depend upon the manner of continuous variation,
which is called the path of integration. When the dif-
ferentials are perfect their integrals are independent of
the paths of integration and functions of the final values
of the variables (the initial values being given con-
stants). A path of integration is determined when the
corresponding values of the variables are determined in
terms of one real variable, since this reduces the differ-
erential to a perfect differential in that one variable.

122. As illustrations, take (z,y) as the co-ordinates
of a point P in the plane XOY, then the path of inte-
gration is shown by a path of P from its initial to its
final position. In this case the imperfect differential
y dz is the differential area described by the ordinate y,

and f y dx along a given path is the total, continuously
described, ordinate area of the path. For, P, P’ being
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two successive positions (z,y) (z,%') of the point on the
path between its initial and final positions, then the
ordinate area PLL’' P'=y, Az, where y, is some ordi-
nate between y= LP and y'=L'P, is the typical
difference f(z, Az, y, Ay) whose sum is the total ordinate
area. Thus }‘.::zyl Az denotes the total ordinate area,

described by any = successive changes along the given
path. As we take » larger and larger, such area is
described more and more nearly continuously, t.e.,
by sums of smaller and smaller differences, so that

lim 3™y, Ax=fu' :ydx represents the result of con-
. a

tinuous summation of ordinate areas described by con-
tinuous motion along the path. If along the given

path y=¢'z, then the integral area becomes fu ¢’ zdr
a

which can be determined when a function ¢z can
be found such that d¢r—=¢'zdx viz., it will be

|u¢x=¢u—¢a. The path must be given in order to
a

evaluatefy dx. Another imperfect differential is the

differential of radial area, % (z dy—y dx); the integral of
this between given limits is the total area described by
the radius OP from the initial to the final position of P,
and it requires the path to be known, such as by ‘‘y a
given function of «’’ or ‘‘z, y given functions of 6,” etc.,
before the integral is determinate. On the contrary,
the sum of the ordinate and radial area described by
OPL is independent of the path, and is % (uv —ab),
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since it is the integral, -}f(a; dy 4y dzx) ='}fd(zy), the
integral of a perfect differential.

123. Asa physical illustration, the amount of heat
required to expand a gas from volume z and pressure y
to volume 2’ and pressure ¥’ depends upon the path or
series of continuous changes from the condition (z,y)
to the condition («',%'). The differential amount of
heat is the amount that would be required to change
from the condition (z, y) to the condition (z+4-dz, y+dy)
if changes continued as at (z,%), and is a quantity
Ldz+4-Mdy, where L,M are functions of (z,y); when
dz,dy are very small this is the principal part of any of
the actual amounts of heat required to make the change.
Because the amount of heat absorbed varies with the
path, this differential cannot be a perfect differential.

124. Potential. On the contrary the work done by
a given natural field of force in displacing a given
particle along any path is independent of the path
when the terminal and initial points are the same. If
X, Y, Z be the components of the force in the directions
of the axes of z,y,z acting on the particle in the posi-
tion P=(z,y,2), then, the differential work for any dis-
placement ds = sum of the differential work of each
component = Xdzx 4 Ydy+Zdz, which must be a
perfect differential.

It thus appears that X, Y, Z must be the partial deri-
vatives of some function ¢(z,v,7z) as to z,¥,z, and
— ¢ (z,y,2) is called the potential of the field on the
particle P. The existence of such a function was dis-
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covered by Lagrange; several years later Greene pointed
out that it represented potential energy, or energy of
position in the field with reference to the initial posi-
tion; viz., — ¢ (2, y,2)=rc is the equation of the surface
of potential ¢, and ¢ is the amount of work that will be
done by the field in moving the particle along any path
from this surface to the zero potential surface, we.,

fdw = fdda (z,y,2)= | $(x,y,2) =c.

ExAMPLES.

1. Find the sums from z=o0 to z=4 of z2Az,
(z24-Az) Az, A.28 /3, for uniform variations of 2, 4,
and n changes. Also represent in each case the terms
of the sum by rectangles in the plane XOY, of ordinates
y=u2, y=1224 Az, y=A(}23)/ Ax respectively, and
base Ar. (Representation by ordinate areas).

2. Show that the limit of each sum in Ex. 1 for
n=o0 is 64,3; also verify that the proportionals of
the differenences approach the same differential z2dx.
Show that in the ordinate area representation, the
common limit of these sums is the ordinate area of the
parabola y=22 from r=o0 to z=4.

3. Find lim 2: zAz by uniform variation; also geomet-

rically by its ordinate area representation; also by the
fundamental theorem of integration (Art. 119).

4. Find by ‘direct integration the functions whose
differentials are udu, u?du, and that vanish when u
vanishes.

Ans. u?/2, u8 /3. (See Art. 114).
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5. Verify by ordinate areas, that f : xdx=£2;—ag-;
also by Th. 3 and d. 22 /2==xdx.

8. Verify by ordinate area that f“ J(@?—z?) dr—
na? /4; also by Th. 3 and Ex. 14 p. 43.

7. Verify by ordinate area that f: J(at—z?)dr=

3uy (a”—u”)—l—-g;—sin—l %, =d1. J(a?—u?) du.

8. If the ordinates of two curves to any same abscissa
are in a constant ratio b /a, then their ordinate areas
between the same bounding ordinates are in the ratio
b/a.

9. If parallel chords between two curves vary as their
distances from a fixed point, then the area of a segment
between two chords as bases is that of the rectangle on
the altitude and the half sum of the bases.

[A chord at distance z is cx, and the area between

chords at distances z=a, z=wu is j’“cxdx=
a
(u—a) (cu4-ca) /2.]

10. If the areas of parallel sections of a tubular surface
vary as the squares of their distances from a fixed point,
find the volume between two parallel sections in terms
of the bases b,, b,, middle section b,, and altitude A.

Ans. A(b,+4b,+b;) /6.

11. Find the volume of a cone or pyramid in terms
of its base and altitude, and also the distance of its
center of volume from the base.

Ans. bh /3, h /4.
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12. Find the volume of a hemisphere of radius a,

and the distance of its center of volume from its base.
27 al

V=fr(a’—x2)da:= 35

mom V/ V=—2%J‘: r(a?—2?) dn:=%

13. Find the moment of inertia of a right circular
cylinder of altitude ¢ and radius a, about its axis.

fa 2. Orexdr = oo at
0 2

14. A wedge is made from a right circular cylinder
of radius a and altitude A, by plane sections through a
diameter of one base and the tangents to the other base
that are parallel to such diameter; find the volume of
the wedge. [A plane perpendicular to the diameter at
distance z from the axis cuts each side piece that is
taken off to make the wedge in a triangle whose area is
to ah /2 as a®—2? is to a2, by similar triangles;

)
thus V=ra? h——-4f %(a2 —2?) dz=0a2h (z—$).]
(1)

15. Find the volume common to two circular cylin-
ders of common upper base and tangent lower bases.

% h
2fo a(aﬁ—xz) dr=%a? h.

16. The axes of two right circular cylinders intersect
at right angles; find the included volume, and the
surface. '

17. A sphere of radius a is charged with 4ra22 units
of electricity (4 per unit area); find its potential ata
point C whose distance is ¢ from the center.
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Draw the diameter OC, and let CP=r, < OCP=¢
where P is any point of a small circle of the sphere
abont OC as axis. The charge of the zone between the
circle P=(r, ) and the circle P'=+', ¢ (whose altitude
is A.rcosf) is 27a’A.rcosf and its potential at C
is 2ral A (rcos 6) /7, where r, is an average disiance
between r and #/.  Since 72 4-¢2 —2r ¢ cos =a?, there-
fore rdr=cd. rcos 0, and the differential potential is
2z aid (rcos 0) /r=2r addr/c. When ¢>a then r
changes from ¢—a to c4-a giving the total potential
4z a2 /¢c. When c<a then r changes from a—c to
a-4c giving the total potential 4= ad.

18. Simpson’s Rule. When given the end chords
Y1, Y, the middle chord y,, and the distance A be-
tween chords, of an area between parallel chords, the
generally best approximate value of the area from these
data is & (y, +4y,+y,) /3.

Any chord y is a function of z, its distance from the
middle chord, say y=a + bx 4 cx? 4-..., a convergent
series. The three given chords can determine at most
only three co-efficients, ¢.e., the best approximation is
to determine y to three terms, and neglect the others
as probably very small. From y=y,, ¥,, ¥5, When
zt=—h,0,h, we have y,=a—bh4ch?, y,=aq,
yg=a-+bh+ch?, and consequently y,4y,=2a+42ch?2.
The required area is

h h
S yts=g 6ot 2ay=3 @, +45,+3)

When given 5 equi-distant chords y,, ¥,, Y3, Y4 ¥s»
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then from the first and last three, the area is by this
rale A (y, +4y, + 2y, + 4, +5)/3, and so on.
This rule applies when the ¥’s are the areas of equi-
distant parallel sections of a volume, etc.

10. Ify,, y,, ¥, ¥4, are four parallel chords of an area
‘at equal distances 2A, then 3k(y,+3y,+3y,+v,) /8
is generally the best approximation to the area from
chord y, to chord y,.

[If y be the chord at distance = from the central
chord of the area, then the best assumption is

y=a-+ bxr 4 cx? 4 ex?, etc.]

g T
20. (7 sin 22" do= { % cosx2"dx
) 0

_1.3.5..(2n—1) =
T9.4.6... 2n 2

f 2gin 220t dyx=— ;cos 22n+1 gy

0 0
2.4.6... 2n
=3.5.7..on+1 (63¢, ]

21. If m, n be positive integers and p==/a then
fa cosmpr. cosnpr.dr=o0 or }a, according as m, n
ar; unequal or equal.

22. If fr=}%A,+A,cospzr+A,cos2pr4A4cos3pr...
for all values of z from o to a===_/p, then show that

A,,=gffxcosnpx.dx.
aJo

[This is Fourier’s theorem for expansion of any
function in a series of cosines.]



SUCCESSIVE DIFFERENTIATION 119

CHAPTER V
Successive Differentiation

I25. Any differential quantity may be itself differ-
entiated, and the result again differentiated, and so on,
since any differential is a new variable depending upon
the previous independent variables and their differen-
tials. Thus each differentiation introduces as many
new independent variables as there are original or
primary independent variables.

E. g., differentiating (according to Prin. 3) first
partially as to = and then partially as to y and adding,
we find

d .zy=d z.y+2zdy
d?  ry=d?z.y4-dr.dy
+4-dz. dy 4-zd2y
=d?z.y+42dz. dy+=z.d%
dd .xy=d3z.y+42dz.dy4dz.d%y
+d2z.dy+2dz. d2y 4-zddy
=d3x.y43d%x.dy+3dx.d2y 4 2d3y

The identity of these successive operations, so far as
numerical co-efficients are concerned, with successive
multiplications of a4 by a -4 b, shows that we must
have always binomial co-efficients, or that

(a) dr.xy=drx.y+nd1z.dy+n(n—1)d"2z. d2y+...
+2d*y. This analogy results from d»=(d.+4d,)",
and the fact (Prin. 4 following.) that d., d, obey the
same formal laws of combination as numbers.
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126. The successive differentiation d#=—=(lim NA)»
can be defined as a single process lim N*A®, To
explain A7, let x take any variation of n changes from
its original value, say «, ,, %,,... z,. This determines
a variation of n — 1 changes in Az, a variation of n — 2
changes in A%z, and so on to one value of A”z. If E
symbolize the process of changing from one value of a
variation to the next (enlarging the variable), so that
Ex=zx, Et=Fr =z, FElz=z,; ... Ercz=nz,,
then we shall always have A= E—1, (understanding
that a sum of processes, means the summing of results
of each process) <. e.,

Az —(E—1)r=Ex—1.2=2,—2
Ax=(E—1)(x, —%) =%y —2, —2, 4+ T=2,—2%, + %
Ay = (33 —22y 4%,)—(Ty + 22, —2) =24 —32, —32, —2

and
(n—1)
2

A g=(E—1)" 2=2, —NTp_1+ N Tp—g—... FNT, =3

Nore.—It is because A, E, 1 are processes that are
distributive over sums and commutative with each
other, that their laws of combination are like those of
ordinary numbers. It is different with processes ‘‘log”’
and ‘‘/”’ that do not obey these laws. FE.g.,
(log +4/)? 2= (log +/) (log 7 +/x) = log (log 2+ /)
+Jdogz 4 ./z), but not =loglogz + 2log Jz4./ J=,
since it is not true that log (z+4-y)=Ilogx 4 logy,
J@4y)= Jz+ Jy and log Jz =/ logz.

Conversely, the n values Az, A%z, ... A"z determine
the variation of z, viz.,
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x,,—E‘"a:_(l-{-A)"z—a:—i—nAx-{— (

+nAr—lg 4 Aty '
127. 1In the case of an independent variable z, the n
successive differences Az, A%z, ... A"x are assignable
at will, and can each be made to approach zero in such a
way that for any proportional factor N that approaches
infinity, the proportional differences NAz, N2A?%z,
.. Nn A7z shall approach any assigned limits dz, d2z,
..drz. At the same time, the successive proportional
differences NAw, N2 A2w ... N*Arw, of a successively
differentiable dependent variable w, must approach
limits dw, d?w, ... d®w, that depend only upon the
values of the independent variables and their successive
differentials.

Eg, Mtry=2,y,—22,y, + 2y
= (242424 A%7) (y+28y+A%Y)=2(z+A7) (y+AY)+ay
=2A%y 1 2A7Ay 4+ yA2z 4 2AxA% 4 2A22Ay 4 A2zA%y
80 that d2? . zy =lim N2 A? .zy =2d%y 4 2 dz dy 4-yd?=.
Partial Differentiation

128. Differentiation under the suppositions that
certain variable quantities are constants is called partial
differentiation. When the suppositions affect only in-
dependent variables and not all of those, then partial
differentiation of equals give equals. Thus in
(x4 y)? =122 4 2zy +y?, we may consider either z or
y to vary alone, or both to vary together so that zy is
constant, and the differentials of each member are
equal under any of these suppositions. But in

A’z-{—
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2?2 4-y?* =4, where both variables must change in
order to maintain the equality, partial differentiation
as to 2 or y does not give an equation that follows from
the given one.

Prin. 4. Two successive partial differentiations of any
Sunction are commutative in order of operation.

In symbols d, d, w=d, d, w, where d, affects certain
variables x, . of w, and d affects certam variables
Y, ... of w.

By Prin. 3 dyw=(dy+...) w=dyw+...

and ddyow=(d:+...)dyw=d,dyw+...
Similaaly dw= (4. )w=dw+4...
and dydw=dy+..)dw=dyd,w+...

It therefore only remains to prove the principle for
partial differentiations as to any two variables z, y, and
this is done at once by

d, dy f(z, y) = d.lim N[ f(z,y) —f(x, ¥)] (definition)
=lim N [d.f(z, ) — dzf(x,%)] (Prin 2)

=dyd; f(z,y) (definition)
By dividing this result by dz dy, we find,
(a 9w 9 dw
) 95y dydx

129. It is not possible to mark a differential symbol
80 as to show all possiple suppositions under which the
differentiation is taken, and form is often used instead
of marks for the purpose. It follows that changes of
form that are legitimate when the differentials are suf-
ficiently marked to indicate their significance, are not
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legitimate when the form is changed so as to lose its
assigned significance as a mark of a certain kind of
differentiation. For example, the early practice was,
with a function w of z,y, to use dw/dx, dw,/dy as
forms for partial differentiation as to z,y, so that in

this notation dw=(;—:dx+%dy. To cancel dz, dy

here gives the incorrect result dw=2dw; but if we
mark the differentiations by subscripts, then dz, dy,
may be cancelled, giving dw=d,w+4d,w, a correct
result.

130. Again, if y be a function of z, whose successive
derivativesare ¥/, ¥/, ... so that dy =y'dx, dy’ =y"dx,...
then d2y =y" dz? 4y d?z,

d3y =vy" dz8 4 3y" dz d?z 4- v/ d3z, etc.

If we suppose dz to be constant in successive differen-
tiations then d?y=1y" dz?, d3y = 3" dx3,... and the
latter forms are understood as ¢ndicating partial differen-
tiatiation with dz assumed constant; so that the quotients
dry/dr2=y", d3y,/dxd8 =y" become abbreviated
forms for the successive derivatives of y as to z. The
full forms for these derivitives are

ddy d d dy

dz dz’ dz dz d’
in which d is unrestricted. Since every differentiation,
in these successive derivations, is performed upon a
function of  alone, it follows that it is independent of
differentials and may be performed under the supposi-
tion that any differential we please is constant; in
particular dr=constant reduces them by Prin. 2 to

.
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the above abbreviated forms. If z is not the inde-
pendent variable but is a function of the independent
variable z, say £=/fz, then we may transform deriva-
tives as to z into derivatives as to z by substituting

dz=f'2dz in the complete forms, but not in the abbrevi- ©
ated ones. Thus, %g—z—f'zidz f’zdz’ but dy=y" dz?
does not become- d2y =y" f'2* dz2 because the accepted
significance of the latter form is that dz= constant
whereas for the first, it is that dz==constant, so that
the two symbols d2y are not symbols of the same
quantity. The true equality resulting from de=Ff"zdz
is here, (d2y)dz constant = ¥" f'2? d22.

dy d dy dlydz—dx dfu
dz? T dr dz dz?

which, as pointed out above, the differentiations of the
last form are unrestricted, and may be made as to any
differential a constant. In particular to make y the in-

dependent variable, we let dy = constant, and so find

dy  dy* dx
dxd = dz3 " dy?’

We have always

ExampLes IV

=1z?¢%; d*y/dz? =e* (22 4424 4)
y=25; ds y /daxs = 5|
y=ux3loge; diy/det=5/x
y==logsin z; d?y/dx?=—cscz?
y—c—"”‘ (acosnz+bsinnz),

Y 4 (mrntyy=o

AN
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6. y=—e"* (a4 bz);
d2y YW oy —
. Ta? +2ma-+m y_o.
7. y=ae™ 4-bem3;
ég-{-mny:o.

8. Solve the equation y +A +By_o where

A, B are constants.

Try y= %, whence ¢? 4 Ac 4 B=o to determine ¢,
Show that the sum of two solutions, each multiplied -
by an arbitrary constant, is a solution, and thence, if
¢=—m, —n, derive the solution of Ex. 7. This solu-
tion is general, because it involves two arbitrary con-
stants a, b, such as would be obtained by two successive
anti-differentiations. If m=n show that besides ¢—m=
also ze—™2 ig a solution, so that the general solution is
that of Ex. 5. Ife=—m+4nJ—1, —m—n/J—1,
then replace the {wo solutions ¢* by their sum multi-
plied by 12 and their difference multiplied by
1,2,/—1, and so obtain the general solution of Ex. 5.

9. If y=f,x be a solution of —-+A ‘Z-—}—By:fz

find the general solution.
[Let y=f,z 4 2 be the general solution; whence z is

found from{l—i-g; +A%+Bz=o.]
10. Solve +2 + 26 y =154 cos 4z 4 8 sin 4x.

Ans, y=9cos 4z 4 8 sin 42 4-¢—= (a cos 5z 4-bsin 5z).
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dru dr1y dv
dzn R P +

U d’l) n
» [da: I d:c] -
12, Show that ~ ¢e2 fz.— 32 (a4 -y fa
) dzn dzx )

[Verify for n=1 and thence for n =2, 3, ...]

13. ; —e2 g2 =¢% [a® x2+2n a*1z4n (n—1)an—?]
14. Verify the followmg transformations of inde-
pendent variable, and solve the equations
dty , dy? dy®
y o — 9 dx3= d2+3 +2x—o

11. Show that ;

U= —5—

d2y+ 2z dy | y
1+a‘2d:cT(1+x2)2

d_z? +y=o, zr=tanz.

Successive Integration

13l. We consider certain ‘‘multiple’” integrals in
two or more variables, where the integration is partial
with respect to each variable in turn, and as if the
remaining variables were constants, while the limits of
variation of each variable are constants, or at most
functions of the variables that are assumed as con-
stants. The integral is written so that the order of
successive integration is from right to left, so that each
integration reduces the multiple integral to one of next
lower multiplicity. Thus

f: f:f (z,y) dedy =fa { f:f (z,9) dy } dz
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is a double integral. The bracketed integral is first
evaluated, with z as a constant, and b, v are at most
functions of 2, so that the bracketed integral is simply a
¢z term in a single integral. Similarly

ﬂf:f:F(x,y,z)dxdydz
=f:j‘:{f':[v(x,y,z)dz}dzldy

is a triple integral. The bracketed integral is first
evaluated, with «z, y as constants, and ¢, w are at meost
functions of z, y, so that the bracketed integral is
simply an f(z, ) term in a double integral. Similarly
for multiple integrals in four or more variables.

132. The single, double, and triple integrals have

- geometric representation as the limits of sums of dif-

ferences over a line, surface, and volume respectively.

We illustrate by examples worked out in detail, show-

ing also in the first illustration the sums considered, of

which the integrals are limits for continuous variation.
The student should make the drawings as described.

133. Find the moment of inertia of a rectangular paral-
lelopiped of edges a, b, ¢, about the edge ¢ as axis.

Let OA=a, OB=0, be the two edges in the plane
of the diagram. Confine attention to the rectangle 4B,
knowing that a length ¢ of the volume is above every
point P. Take OA, OB as axes of z, y. Lay off
OL=z, OL'=7«, LP=y, L P'=y', where P, P’
are neighboring points within the rectangle 4B. Then
cAzx Ay is the difference volume whose base is the
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rectangle PP’ and (z? 4-y?) cAr Ay is its moment of
inertia as to the axis OC, where (z,, y,) is some point
of the rectangle PP’. Here, z1 4y} is a function,
¢ (z, Az, y, Ay), that reduces to 2 4-y2 when Azr=—o,
Ay =o. If we assume z, Ar to be constants and give
y any variation from o to b, then the sum of the differ-
ence volumes PP’, is 2: cAzr Ay, =bcAz, the difference
volume whose base is the rectangle LL' @ @ of altitude
b and base Ar; and the sum of the moments of inertia
of the difference volumes PP’ is Ei(mf—{—y:) A TAy=
the moment of inertia of the difference volume L'
Next give z any variation from o to a, and then the
sum of the difference volume L@, is 37 bcAz=abc=
the entire volume; and the sum of their moments
of inertia is the entire moment of inertia,
373 (z34y)eAzAy. The results hold for any vari-
ation, first of ¥ from o to b with z, Az constant, and -
then of z from o to @;and in particular for continuous
variations, in which the sums become integrals of
the differentials corresponding to the vanishing differ-
ences. Thus cdrdy is the differential volume P, and
(2 4y?)edrdy is its moment of inertia. Also,

fb cdx dy=becdzx is the differential valume LQ, while
fb (z? +y?) cdx dy=be (2? +b§2) dr is its moment
[
. b
of inertia; and finally, f: f £ dzdy = f: be dx=abc,
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is the total volume, and fa j‘b (z24y2)cdedy =
oJo

2 .
=‘f’b(:(:c"’-i—l%)da:=abcaz+b2 is the total
(]

3
moment of inertia.

134. PFind the moment of inertia of a right cylinder about
its axis, OC =c, where the base 8 an elliptic quadrant of
radii OA=a, OB=).

As before cdrdy, c (22 4y?) dxdy are the differ-
ential volume at P and its moment of inertia; and these
integrals trom y=oto y=9y,=LK=b,/(a?—z?)/ a
=the ordinate of the point K on the ellipse AB whose
abscissa is = OL, are

f”‘cdxdy=cyl dz,

fle@tyyddy=c @y, +%) o

These are therefore respectively the differential vol-
ume LK and its moment of inertia. Finally

volume =fcyldx = 7%0 [Ex. 14, p. 43.]
a 3
mom. iner.=f c(xy, +%‘) dx
o
__mabc a? 4 b?

4 T [Ex. 16, p. 43.]

185. PFind the moment of inertia of the preceding elliptic
cylinder about the axis OA.

Show the axis OC and the cylinder COAB in pers-
pective on the plane of the diagram. Draw a plane
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through the ordinate LK perpendicular to 04, and
therefore intersecting the cylinder in elements KN, LM;
draw RQ parallél to LM and intersecting LK in R,
MN in @; and on RQ take any point P=z,y,z=
(OL, LR, RP). The differential volume P is dz dy dz,
and its moment of inertia as to 04 is (y2 4 22) dx dy d=.
Integrating from z=o0 to z=c we find the differential
volume RQ and its moment of inertia,

j‘c de dy dz =cdz dy,
[
[ @+ dodyde=(yre ) du dy.

Integrating again from
y=o0 to y=y, =LEK=b a? — 22 /a

we find the differential volume KLMN and its moment
of inertia,
vi +c2

cy, dr, ¢y,

These are results that can be found directly from
geometry and Art. 134. Integrating then from z=o
to x=a, we find the total volume and its moment of
inertia,

}rabe, }rnabe (b2 44c¢2/3.)

136, Find the volume and moment of inertia about OC
of the octant of an ellipsoid of radiv OA=—a, OB=2),
0C=c.

The figure is shown in plane diagram by projections
of quadrants of the ellipses AB, BC, CA; the section by
a plane perpendicular to O4 through the ordinate LK of
arc AB is an elliptic quadrant KM from. AB to CA4;
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draw in thls plane RQ parallel to LM from LK to arc
KM, and we have smce — + + — =1 for any point
(x, y,z) on the elllpsmd LK=5b ./ (a* —=x?)/a,

RQ—cJ( 1 — h— ) Take on R @ any point

P=(z,vy, )= (OL, LR, RP). The volumes and
moments of inertia about OC are,

N

and the same integration of (v2 4 y?) dx dy dz.

The results of the first two partial integrations may be
found geometrically from Art. 134, applied to the
elliptic cylinder of length dzx on the base LKM, and are

TLK.LMds, “LK.LM & LK LN
4 ' 4 4
= be
IM=c¢/ (a?—2%) / a], Ta? (a2 — z?) dz,
wbe (b2 4 c?)
16 a?

or [since

(a? —2?)? dz, and the integrals of these

from z==o0 to x=a give finally %bc, %ﬂ;—ﬂ

187. If m denote the volume (or mass of a homo-
geneous volume) then the rectangular parallelopiped,
elliptic cylinder, and ellipsoid, whose semi-axes of
symmetry are 04=a, OB=>5b, OC=c, and of which
the volumes of the preceding articles are octants, have
the following moments of inertia
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Parallelopiped: m ot +0b° about OC'; ete.
P 3

Cylinder: m a? 1_62 about OC;

b2 c?
m (T 4 —3—) about OA, etc.

Ellipsoid : m a2 -é-bﬂ about OC; etc.

These are easily remembered, and are useful,
especially in connection with the theorem of Art. 139.

138. Center of gravity. The differential element of
mass at (z,y, z) called a particle P, is u dx dy dz where
w is in general a function of z,y, z denoting the density
at that point. If (X, ¥, 2) be the center of mass (center
of gravity) then computing moments as to the planes
Yz, 2z 2y directly, and by the sum of the moments of the
particles, we find

mx=fffmh@&
my=fffwh@&
mz=fjfmh@&

139. The moment of inertia of a given mass about a
given axis is equal to the moment of inertia of the mass about
a paralled axes through the center of mass plus the product
of the mass and the square of the distance vetween the axes.

Let OZ be the axis through the center of mass, and
let OA=a, be the distance between the axcs. We

have ff f urdrdydz=mX=o0 by hypothesis; and
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therefore m k? =fff [(x—a)? 4y ]udrdy dz =

ff (2 +y?) udx dy dz 4 a? fffudxdydz=
m ki 4+ ma2.

140. A cylinder with elements perpendicular to the
7, y plane intersects a surface z=f (z, y); required the
surface area intercepted by the cylinder..

If A28 be the portion of the surface intercepted by
the cylinder on the rectangle Az Ay as base, the cor-
responding differential element of surface d28 is inter-
cepted on the tangent plane to the surface at P=(z, y,2)
by the cylinder on dr dy as base; so that if y be the
angle between this tangent plane and the plane z y,
1. e., the angle between the axis of z and the normal
to the surface at P, we have d2Scosy=dxdy so

that d? S=dxdysecy, and S=f f secydx dy, over

the base of the given cylinder on the zy plane. To
find sec y in terms of 2, y observe that if w=o0 be the
equation of a surface, then for variations of P on that

dw , | dw w .
surface w=o0 or 72 dx 4 3y dy +—9—z dz=o0. This

shows that the line PN whose components on the axes

:a,l'e"?—“1 a_w <_9_u1 is perpendicular to the tangent line
dz’ 9]/, Jz perp 1 g

~ PS=ds, whose components are dz, dy, dz.* .

Thus PN is a normal to the surface at P since it

*If r,7 be two lines that make an angle 4 with each other and angles
a,b,e, a,¥,c, with the axes, then eqating the projection of r upon
to the sum of the projections of the components of r upon /, we have

rcos A=rcosa.cosa’ +rcosb.cosd+rcosc.cosc

orr’cos A=1V+mm’+nn' in terms of the components of r,7; if
this is zero then A4 is a right angle.
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"is perpendicular to every tangent line PS, and
PNcosr—é)w/az =1 when w——z-—f (x y) Also

=3+ 2+ =14 5
Z:‘f(x7y)'

ExaAMPLES.
1. Find the center of gravity of an arc of a circle of
radius a and length /.

[Take the center as origin and axis of y parallel to
the chord, whose length is k=2asin—1(l/2a). Then

x=f1 —fi:ka dy| l=a.§.

since y varies from — 3k to 4k when s varies fromoto .

_fyds[fds f—adx|z=o

2. Find the center of gravity of a straight wire whose
density varies uniformly from end to end.

Let a, b, be the densities at.the ends, and ! be the length
of the wire; then the density at distance z from the
first end is u=a <4 (b—a)z /!, and

x=f:uxd:c| fiudx=§l (a+2b) / (a+d)

3. Find the center of gravity of the first quadrant arc
. of the hypocycloid 28 4-yt=a?.

X=y=%a.
4. Find the center of gravity of the first quadrant
area of the circle z2 4-y2 =a?2.
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]
‘ 4a

=3—”=y.

5. Find the center of gravity of the first quadrant
area of the hypocycloid 284 yt=a?t.

6. Find the center of gravity of the area of the
cardioid »=2a (1—cos¥).

7. Find the center of gravity of the parabloic area
y2=4az from r=ao0.

8. Find the center of gravity of a hemisphere whose
density varies as the distance from the center; find also
its radius of gyration about its axis of symmetry.

9. Find the center of gravity and the radius of
gyration of the volume generated by the- revolution of
y?=4ax about the axis of x (from r=o0).

10. ‘Find the radius of gyration of a sphere about a
tangent line as axis. (Arts. 137, 239).

11. Compare and verify when necessary the following
formulas for straight and rotary motion of a rigid body;
dm = mass of a differential particle; v = its linear
velocity; r = its distance from the axis in rotary
motion. The integration extends to every particle of
the body, and for this integration v = constant in linear
motion, and v/ r=w=constant in rotary motion; v
and w are, however, variable with the time.
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STRAIGHT MOTION ROTARY MOTION
m=1inertia (mass) I=moment of inertia
=fdm = | r?dm
v=rvelocity w=v /r=angular vel.
my=momentum Iw=mo. of momentum
vdm =} rodm
dv . dw
—=—acceleration dt_ a.ngular a.cceleratlon
dt
m %% =force I %7—”=moment of forces
. dv dv

#mv? =Kkinetic energy $Iw?=kinetic energy

=f§v2 dm =f§~v’ dm

In finding the moment of the forces in rotary motion
the tangential acceleration of dm, viz, %’, is the only

effective component, since the normal component v2 /7
passes through the axis. (See Art. 86). In straight
motion there is no normal component of acceleration
since the curvature of a straight line is zero (or its radius
of curvature infinite).

12. Find the surfaces cut from one another by a right
circular cylinder of radius a and a sphere of radius 2q,
whose center is on the cylindrical surface.

13. Find the volume enclosed in Ex. 12.
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14. Find the volume enclosed by the surface

zl4yi4-zi=al

*15. Show that if an arc of length s be revolved about
an axis in its, plane, the surface described is the product
of 8 into the length of path of the center of gravity of s.
State and prove a similar thearem for revolution of a -
plane area about an axis in its plane.

16. Find the volume and surface of the anchor ring,
generated by revolving a circle of radius b, about an
axis in its plane at distance a from the center.

17. In polar co-ordinates (r, 6, ¢) of a point P with
reference to an initial line OA and initial plane OAB,
we have

r=0P, 0=<AOP, ¢ =
diedral angle between OAP and OAB. Show that the
differential element of volume is
dV=dr.rd0.rsin0d¢.
=r2ginfdrdod¢.
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Rules of Differentiation
I d.vw=lu"1du.
() d.wrvm=u1lym1(lydu+4mudv). ¢

() d.u! /v*r=u1(lvdu—mudv) /v™t1,

II. d.a¥=avlogady; d.ev=evdy.
(@) d.wV=yuwdu-+u¥logu.dy.
IIL. dlog,v=dv/vloga, dlogv=dv /.
(a) dlog(z4 JaerFca?)=de/ J (@2 4-ca?).
: z adz
®) dlog g e — 7 d (@ Featy
a+x 2adx
() dlog - =Gi—r
IV dginv=cosv.dv; ' dcosv=—sinv. dv.
dtanv=secv?dv; d cotv=—cscv? dv.
d secv=secv. tanv. dv, dcscv=—cscv.cotv.dv.
—1%_ dv 1%
V dsin - ,,/(a*—xl) —dcos p
% odr g o—1?
dtan PR dcot a
I 1. Y Pt
dsec o= s f @ —a) dcsc Py
—1?_— _dx—_= in—1
dvers o= Jar— d sin

Prin 3. df(z,y)=d.f(2,y) +dyf(z,9).
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Rules of Integration
I dlutdu=u'*t1/(I41).
IIT  d-1l.du/u==logu, or log—u, or logcu.

i @ f j(Td:icT) =log (z+ ¥7* Fca?), ete.

e _ e
v fm—Sln a

dx . 1 -1 z
v fﬁT-i-_x” = —tan~1-.
dx 1 a4z
dx 1 z
L) [ eam —a e Jorrar

dx 1 x

v f :c—:/(_x‘f:a_2)= = sec™! b
II dl.a*de=a* /loga; dl.e"dr=e".
IV d-l.sinvdv=—cosv;  d-l. cosvdv=ginwv.
IIT  d-1.tanv.dv=—1log cosv;

d—1, cot v dv =1log sin .
III  d—'.secvdv==1og (sec v 4 tan v);

d-1. escvdv=1log (csc v — cot v).

IV d-lsecv? dv=tanv; d—!cscv?dv=—cotn.
v d—1 sec v tan v dv = sec v;
d—! csc v cot v dv=— csc .

d—1.sinv? dv =%} (2v — sin 2v);
d—1 cosv? dv=1% (2v 4 sin 2v).
Inv. Prin. 8. d71.d.f(z,y)=f(z,y) —d1d,f(z,y).





















